Cereal crop genome editing tools and their applications to sustainable agriculture

Authors

  • Nagwa I. ELARABI Cairo University, Faculty of Agriculture, Genetics Department, Giza, 12613 (EG)
  • Abd El-Latif HESHAM Beni-Suef University, Faculty of Agriculture, Genetics Department, Beni-Suef (EG)
  • Hossam S. EL-BELTAGI King Faisal University, College of Agriculture and Food Sciences, Agricultural Biotechnology Department, Al-Ahsa 31982; Cairo University, Faculty of Agriculture, Biochemistry Department, Giza 12613 (SA)
  • Adel A. REZK King Faisal University, College of Agriculture and Food Sciences, Agricultural Biotechnology Department, Al-Ahsa 31982 (SA)
  • Tarek A. SHALABY King Faisal University, College of Agricultural and Food Science, Arid Land Agriculture Department, Al-Ahsa 31982; Kafrelsheikh University, Faculty of Agriculture, Horticulture Department, Kafr El-Sheikh 33516 (SA)
  • Mohamed S. AL-SAIKHAN King Faisal University, College of Agricultural and Food Science, Arid Land Agriculture Department, Al-Ahsa 31982 (SA)
  • Amal A. MOHAMED Umm Al-Qura University, Al-Leith University College, Chemistry Department, Makkah, P.O. Box 6725-21955 (SA)
  • Abdelhadi A. Abdelhadi Cairo University, Faculty of Agriculture, Genetics Department, Giza, 1261, Egypt (EG)

DOI:

https://doi.org/10.15835/nbha52113494

Keywords:

bioinformatics tools, cereals, CRISPR, genome editing, gRNA design

Abstract

Sustainable agriculture is essential to attain food security and address increasing climate change concerns. Population, abiotic and biotic stresses and limited agricultural water supplies and land are important barriers to cereal crops production, in addition to extreme weather. These factors influence their quality and productivity. Therefore, there is a pressing need for effective methods of food production under these conditions. For many individuals in low- and middle-income nations, cereals represent a key food source. Developing cereal crops with enhanced flexibility, high yields, and the ability to tolerate these biotic and abiotic problems is therefore essential. Modern OMICS techniques, next-generation sequencing, bioinformatics tools and the most recent improvements in genome editing tools (GET) have made targeted mutagenesis conceivable. By altering a crop variety's endogenous genome, which is free of any foreign genes, genome editing (GE) enhances the crop variety. Therefore, crops that have undergone GE but have not integrated foreign genes are not considered genetically modified organisms (GMOs) in a number of countries. GE is being used by researchers to promote the nutritional value of cereal crops and increase their tolerance to biotic and abiotic stresses. This review critically discusses the activities of GET, the role of bioinformatics tools and its application to sustainable agriculture for cereal crops.

References

Abadi S, Yan W X, Amar D, Mayrose I (2017). A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Computational Biology 13(10):e1005807. https://doi.org/10.1371/journal. pcbi.1005807

Abdallah NA, ElsharawyH, AbulelaHA, ThilmonyR, Abdelhadi AA, Elarabi NI (2022). Multiplex CRISPR/Cas9- mediated genome editing to address drought tolerance in wheat. GM Crops & Food. https://doi.org/10.1080/21645698.2022.2120313

Abdelrahmana M, Al-Sadi AM, Pour-Aboughadareh A, Burritt DJ, Tran LP (2018). Genome editing using CRISPR/Cas9–targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiology and Biochemistry 131:31-36. https://doi.org/10.1016/j.plaphy.2018.03.012

Aboubacar A, Axtell JD, Huang CP, Hamaker BR (2001). A rapid protein digestibility assay for identifying highly digestible sorghum lines. Cereal Chemistry 78:160-165. https://doi.org/10.1094/CCHEM.2001.78.2.160

Alam MS, Kong J, Tao R, Ahmed T, Alamin M, Alotaibi SS, Abdelsalam NR, Xu JH (2022). CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants 11(9):1184. https://doi.org/10.3390/plants11091184

Alipanahi R, Safari L, Khanteymoori A (2023). CRISPR genome editing using computational approaches: A survey. Frontiers in Bioinformatics 2:1001131. https://doi.org/10.3389/fbinf.2022.1001131

Alkhnbashi OS, Mitrofanov A, Bonidia R, Raden M, Tran VD, Eggenhofer F, … Backofen R (2021). CRISPRloci: Comprehensive and accurate annotation of CRISPR–Cas99 systems. Nucleic Acids Research 49:W125-W130. https://doi.org/10.1093/nar/gkab456

Altpeter F, Springer NM, Bartley LE, Blechl A, Brutnell TP, Citovsky V, … Stewart CN (2016). Advancing crop transformation in the era of genome editing. Plant Cell 28:1510-1520. https://doi.org/10.1105/tpc.16.00196

Andorf C, Beavis WD, Hufford M, Smith S, Suza WP, Wang K, Woodhouse M, Yu J, Lübberstedt T (2019). Technological advances in maize breeding: past, present and future. Theoretical and Applied Genetics 132(3):817-849. https://doi.org/10.1007/s00122-019-03306-3.

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149-157. https://doi.org/10.1038/s41586-019-1711-4

Awika JM (2011). Major cereal grains production and use around the world. In: Awika JM, Piironen V, Bean S (Eds). Advances in cereal science: Implications to food processing and health promotion. American Chemical Society USA pp 1-13. https://doi.org/10.1021/bk-2011-1089.ch001

Bae S, Park J, Kim JS (2014). Cas9-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473-1475. https://doi.org/10.1093/bioinformatics/btu048

Bagge M, Xia X, L¨ubberstedt T (2007). Functional markers in wheat. Current Opinion in Plant Biology 10(2):211-216. https://doi.org/10.1016/j.pbi.2007.01.009

Baloch FS, Altaf MT, Liaqat W, Bedir M, Nadeem MA, Cömertpay G, … Sun HJ (2023). Recent advancements in the breeding of sorghum crop: current status and future strategies for marker-assisted breeding. Frontiers in Genetics 14:1150616. https://doi.org10.3389/fgene.2023.1150616

Bellis ES, Kelly EA, Lorts CM, Gao H, DeLeo VL, Rouhan G, … Lasky JR (2020). Genomics of sorghum local adaptation to a parasitic plant. Proceedings of the National Academy of Sciences 117(8):4243-4251. https://doi.org/10.1073/pnas.1908707117

Bhalla PL, Sharma A, Singh MB (2017). Enabling molecular technologies for trait improvement in wheat. Wheat Biotechnology. 1679 of Methods in Molecular Biology, pp 3-24. Springer New York, New York, NY, USA.

Bhowmik P, Ellison E, Polley B,Bollina V, Kulkarni M, Ghanbarnia K, Song H, Gao C, Voytas DF, Kagale S (2018). Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Scientific Reports 8:6502. https://doi.org/10.1038/s41598-018-24690-8

Boel A, Steyaert W, De Rocker N, Menten B, Callewaert B, De Paepe A, Coucke P, Willaert A (2016). BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment. Scientific Reports 6:30330. https://doi.org/10.1038/srep30330

Borlaug NE (1998). Feeding a world of 10 billion people: the miracle ahead. Plant Tissue Culture and Biotechnology 3:119-127. https://doi.org/10.1079/IVP2001279

Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018). The enhancement of plant disease resistance using CRISPR/Cas9 technology. Frontiers in Plant Science 24(9):1245. https://doi.org/10.3389/fpls.2018.01245

Bortesi L, Fischer R (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33:41-52. https://doi.org/10.1016/j.biotechadv.2014.12.006

Bubeck F, Hoffmann MD, Harteveld Z, Aschenbrenner S, Bietz A, Waldhauer MC, … Niopek D (2018). Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9. Nature Methods 15(11):924-927. https://doi.org/10.1038/s41592-018-0178-9

CancellieriS, Canver MC, Bombieri N, Giugno R, Pinello L (2020). CRISPRitz: Rapid, high-throughput and variant-aware in silico off-target site identification for CRISPR genome editing. Bioinformatics 36(7):2001-2008. https://doi.org/10.1093/bioinformatics/btz867

Čermák T, Curtin SJ, Gil-Humanes J, Čegan R, Kono TJY, Konečná E, … Voytas DF (2017). A multi-purpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196-1217. https://doi.org/10.1105/tpc.16.00922

Char SN, Wei J, Mu Q, Li X, Zhang ZJ, Yu J, Yang B (2020). An Agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnology Journal 18(2):319-321. https://doi.org/10.1111/pbi.13229

Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W, Sigmund AL, Zastrow-Hayes G, Miller M, Liu D (2018). Developing a flexible, high efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnology Journal 16:1388-1395. https://doi.org/10.1111/pbi.12879

Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019). CRISPR/Cas9 genome editing and precision plant breeding in agriculture. Annual Review Plant Biology 70:667-697. https://doi.org/10.1146/annurev-arplant-050718-100049

Chen X, Yang S, Zhang Y, Zhu X, Yang X, Zhang C, Li H, Feng X (2021). Generation of male-sterile soybean lines with the CRISPR/Cas9 system. Crop Journal 9:1270-1277. https://doi.org/10.1016/j.cj.2021.05.003

Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A,Hummel A, Bogdanove AJ, Voytas DF (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757-761. https://doi.org/10.1534/genetics.110.120717

Chuai G, Ma H, Yan J, Chen M, Hong N, Xue D, … Liu Q (2018). DeepCRISPR:Optimized CRISPR guide RNA design by deep learning. Genome Biology 19(1):80-18. https://doi.org/10.1186/s13059-018-1459-4

Concordet JP, Haeussler M (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research 46:W242-W245. https://doi.org/1010.1093/nar/gky354

Dahlberg J (2019). The role of sorghum in renewables and biofuels. In: Zuo-Yu Zhao, Jeff Dahlberg (Eds). Sorghum: Methods and Protocols. Methods in Molecular Biology. https://doi.org/10.1007/978-1-4939-9039-9_12

Dampier W, Chung CH, Sullivan NT, Atkins AJ, Nonnemacher MR, Wigdahl B (2018). CRSeek: A Python module for facilitating complicated CRISPR design strategies, PeerJ 2167-9843. https://doi.org/10.7287/peerj.preprints.27094v1

Daou C, Zhang H (2012). Oat beta‐glucan: Its role in health promotion and prevention of diseases. Comprehensive Reviews in Food Science and Food Safety 11(4):355-365. https://doi.org/10.1111/j.1541-4337.2012.00189.x

Daryanto S, Wang L, Jacinthe PA (2016). Global synthesis of drought effects on maize and wheat production. PLoS One 11:e0156362. https://doi.org/10.1371/journal.pone.0156362

Demirer GS, Silva TN, Jackson CT, Thomas JB, Ehrhardt DW, Rhee SY, Mortimer JC, Landry MP (2021). Nanotechnology to advance CRISPR–Cas9 genetic engineering of plants. Nature Nanotechnology 16:243-250. https://doi.org/10.1038/s41565-021-00854-y

Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Chang R, Aditham AJ, Chio L, Cho MJ, Staskawicz B, Landry MP (2019). High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology 14:456-464. https://doi.org/10.1038/s41565-019-0382-5

Do PT, Lee H, Nelson-Vasilchik K, Kausch A, Zhang ZJ (2018). Rapid and efficient genetic transformation of sorghum via Agrobacterium-mediated method. Current Protocols in Plant Biology 3:e20077. https://doi.org/10.1002/cppb.20077

Dong L, Qi X, Zhu J, Liu C, Zhang X, Cheng B, Mao L, Xie C (2019). Super sweet and waxy: Meeting the diverse demands for specialty maize by genome editing. Plant Biotechnology Journal 17:1853-1855. https://doi.org/10.1111/pbi.13144

Dong OX (2020). Gene replacement and knockin made easy in plants. Molecular Plant 13(8):1104. https://doi.org/10.1016/j.molp.2020.07.015

Donoso T (2022). Standardizing the CRISPR-Cas9 System in Oat to Understand Beta-Glucan Regulation. Master’s Thesis, McGill University, Montréal, QC, Canada.

El-Beltagi HS, Aziz SMSA, Aboshady AI, Ibrahim MAR, Ibrahim, MFM, Alenezi MA, … Darwish H (2023). Isolation and identification of flavonoids from black cumin (Nigella sativa) by HPLC-MS and in silico molecular interactions of their major compounds with Fusarium oxysporum trypsin-like serine protease. Separations 10:360. https://doi.org/10.3390/separations10060360

Erdoğan İ, Cevher-Keskin B, Bilir Ö, Hong Y, Tör M (2023). Recent developments in CRISPR/Cas9 genome-editing technology related to plant disease resistance and abiotic stress tolerance. Biology (Basel) 12(7):1037. https://doi.org/10.3390/biology12071037

Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J (2013). Efficient genome editing in plants using aCRISPR/Cas9 system. Cell Research 23(10):1229-1232. https://doi.org/10.1038/cr.2013.114

Feuillet C, Keller B (2002). Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Annals of Botany 89(1):3-10. https://doi.org/10.1093/aob/mcf008

Gao H, Gadlage MJ, Lafitte HR, Lenderts B, Yang M, Schroder M, Farrell J, Snopek K, Peterson D, Feigenbutz L (2020). Superior field performance of waxy corn engineered using CRISPR–Cas9. Nature Biotechnology 38:579-581. https://doi.org/10.1038/s41587-020-0444-0

Gasparis S, Kala M, Przyborowski M, Lyznik LA, Orczyk W, Nadolska-Orczyk A (2018). A simple andefficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods 14:111. https://doi.org/10.1186/s13007-018-0382-8

Gasparis S, Przyborowski M, Kała M, Nadolska-Orczyk A (2019). Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA-guided Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology. Cells 8:782. https://doi.org/10.3390/cells8080782

Ge R, Mai G, Wang P, Zhou M, Luo Y, Cai Y, Zhou F (2016). CRISPR digger: Detecting CRISPRs with better direct repeat annotations. Scientific Reports 6(1). https://doi.org/10.1038/srep32942

Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, Barro F, Gao C, Voytas DF (2017). High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant Journal 89(6):1251-1262. https://doi.org/10.1111/tpj.13446

Gill BS, Appels R, Botha-Oberholster A, Buell CR, Bennetzen JL, Chalhoub B, … Sasaki T (2004). A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168(2):1087-1096. https://doi.org/10.1534/genetics.104.034769

Güell M, Yang L, Church GM (2014). Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics 30(20):2968-2970. https://doi.org/10.1093/bioinformatics/btu427

Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly J-S, Con-cordet JP (2016). Evaluation of off-target and on-target scoring algorithms and inte-gration into the guide RNA selection tool CRISPOR. Genome Biology 17:148. https://doi.org/10.1186/s13059-016-1012-2

Hahn F, Eisenhut M, Mantegazza O, Weber APM (2018). Homology-directed repair of a defective glabrous gene in Arabidopsis with Cas999-based gene targeting. Frontiers in Plant Science 9:424. https://doi.org/10.3389/fpls.2018.00424

Hahn F, Korolev A, Sanjurjo LL, Nekrasov V (2020). A modular cloning toolkit for genome editing in plants. BMC Plant Biology 20:179. https://doi.org/10.1186/s12870-020-02388-2

Hahn F, Nekrasov V (2019). CRISPR/Cas9 precision: Do we need to worry about off-targeting in plants? Plant Cell Reports 38:437-441. https://doi.org/10.1007/s00299-018-2355-9

Hamada H, Liu Y, Nagira Y, Miki R, Taoka N, Imai R (2018). Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Scientific Reports 8:14422. https://doi.org/10.1038/s41598-018-32714-6

Han Y, Broughton S, Liu L, Zhang XQ, Zeng J, He X, Li C (2020). Highly efficient and genotype- independent barley gene editing based on anther culture. Plant Communication 1:100082. https://doi.org/10.1016/j.xplc.2020.100082

Heigwer F, Kerr G, Walther N, Glaeser K, Pelz O, Breinig M, Boutros M (2013). E-TALEN: a web tool to design TALENs for genome engineering. Nucleic Acids Research 41:e190. https://doi.org/10.1093/nar/gkt789

Hillary VE, Ceasar SA (2019). Application of CRISPR/Cas9 genome editing system in cereal crops. Open Biotechnology Journal 13(1):173-179. https://doi.org/10.2174/1874070701913010173

Hirano HY, Tanaka W, Toriba T (2014). Grass flower development. In: Riechmann JL, Wellmer F (Eds). Flower Development - Methods and Protocols. pp 57-84, Springer, New York.

Holubova K, Hensel G, Vojta P, Tarkowski P, Bergougnoux V, Galuszka P (2018). Modification of Barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Frontiers in Plant Science 9:1676. https://doi.org/10.3389/fpls.2018.01676

Howells RM, Craze M, Bowden S, Wallington EJ (2018). Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9. BMC Plant Biology 18:215. https://doi.org/10.1186/s12870-018-1433-z

Hsu PD, Lander ES, Zhang F (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262-1278. https://doi.org/10.1016/j.cell.2014.05.010

Hyun TK (2020). CRISPR/Cas9-based genome editing to improve abiotic stress tolerance in plants. Botanica Serbica 44(2):121-27. https://doi.org/10.2298/BOTSERB2002121H

Ikeda T, Tanaka W, Mikami M, Endo M, Hirano HY (2016). Generation of artificial drooping leaf mutants byCRISPR-Cas999 technology in rice. Genes and Genetic Systems 90(4):231-235. https://doi.org/10.1266/ggs.15-00030

Jia N, Mo CY, Wang CY, Eng ET, Marraffini LA, Patel DJ (2019). Type III-A CRISPR-Cas9 Csm complexes: assembly, periodic RNA cleavage, DNase activity regulation, and autoimmunity. Molecular Cell 73:264-277. https://doi.org/10.1016/j.molcel.2018.11.007

Jia Y (2003). Marker assisted selection for the control of rice blast disease. Pesticide Outlook 14(4):150-152. https://doi.org/10.1039/B308503C

Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 41(20):e188. https://doi.org/10.1093/nar/gkt780

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. https://doi.org/10.1126/science.1225829

Jordan MC, Somers DJ, Banks TW (2007). Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. Plant Biotechnology Journal 5(3):442-453. https://doi.org/10.1111/j.1467-7652.2007.00253.x

Kamburova VS, Nikitina EV, Shermatov SE, Buriev ZT, Kumpatla SP, Emani C, Abdurakhmonov IY (2017). Genome editing in plants: an overview of tools and applications. International Journal of Agronomy 7315351. https://doi.org/10.1155/2017/7315351

Kang C, Shin WS, Yeo D, Lim W, Zhang T, Ji LL (2018). Anti-inflammatory effect of avenanthramides via nf-κb pathways in c2c12 skeletal muscle cells. Free Radical Biology and Medicine 117:30-36. https://doi.org/10.1016/j.freeradbiomed.2018.01.020

Kaur K, Gupta AK, Rajput A, Kumar M (2016). ge-CRISPR-An integrated pipeline for the prediction and analysis of sgRNAs genome editing efficiency for CRISPR/Cas9 system. Scientific Reports 6(1). https://doi.org/10.1038/srep30870

Kaur M, Singh S (2017). Physical characteristics of different oat cultivars: Influence on pasting, functional and antioxidant properties. Quality Assurance and Safety of Crops & Foods 9(3):285-293. https://doi.org/10.3920/QAS2016.0987

Kaur N, Aloka A, Shivania Kumara P, Kaura N, Awasthia P, Chaturvedi S, Pandeya P, Pandeya A, Pandeya AK, Tiwaria S (2020). CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metabolic Engineering 59:76-86. https://doi.org/10.1016/j.ymben.2020.01.008

Kausch AP, Nelson-Vasilchik K, Tilelli M, Hague JP (2021). Maize tissue culture, transformation, and genome editing. In Vitro Cellular & Developmental Biology-Plant 2:1-9. https://doi.org/10.1007/s11627-021-10196-y

Kemppainen TA, Heikkinen MT, Ristikankare MK, Kosma VM, Julkunen RJ (2010). Nutrient intakes during diets including unkilned and large amounts of oats in celiac disease. European Journal of Clinical Nutrition 64(1):62-67. https://doi.org/10.1038/ejcn.2009.113

Kim YG, Cha J, Chandrasegaran S (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America 93(3):1156-1160. https://doi.org/10.1073/pnas.93.3.1156

Kuang Y, Li S, Ren B, Yan F, Spetz C, Li X, Zhou X, Zhou H (2020). Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Molecular Plant 13:565-572. https://doi.org/10.1016/j.molp.2020.01.010

Kumar M, Prusty MR, Pandey MK, Singh PK, Bohra A, Guo B, Varshney RK (2023). Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Frontiers in Plant Science 18(14):1157678. https://doi.org/10.3389/fpls.2023.1157678

Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E (2019). CHOP-CHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research 47:W171W174. https://doi.org/10.1093/nar/gkz365

Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biology 16:258. https://doi.org/10.1186/s13059-015-0826-7

Lee M (2023). Deep learning in CRISPR-Cas9 systems: a review of recent studies. Frontiers in Bioengineering and Biotechnology 11:1226182. https://doi.org/10.3389/fbioe.2023.1226182

Leggett JM, Thomas H (1995). Oat evolution and cytogenetics. In: Welch RW (Ed). The oat crop: Production and utilization. Dordrecht: Springer Netherlands, pp 120-149.

Li A, Jia S, Yobi A, Ge Z, Sato SJ, Zhang C, Angelovici R,Clemente TE, Holding DR (2018). Editing of an alpha-Kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiology 177:1425-1438. https://doi.org/10.1104/pp.18.00200

Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C (2016). Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nature Plants 2:16139. https://doi.org/10.1038/nplants.2016.139

Li M, Hensel G, Melzer M, Junker A, Tschiersch H, Ruwe H, Arend D, Kumlehn J, Börner T and Stein N (2021) Mutation of the ALBOSTRIANS Ohnologous Gene HvCMF3 impairs chloroplast development and thylakoid architecture in barley. Frontiers in Plant Science 12:732608. https://doi.org/10.3389/fpls.2021.732608

Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012). High-efficiency TALEN-based gene editing produces disease- resistant rice. Nature Biotechnology 30(5):390-392. https://doi.org/10.1038/nbt.2199

Li X, Zhou W, Ren Y, Tian X, Lv T, Wang Z, Fang J, Chu C, Yang J, Bu Q (2017). High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. Journal of Genetic and Genomics 44:175-178. https://doi.org/10.1016/j.jgg.2017.02.001

Li Y, Liang J, Deng B, Jiang Y, Zhu J, Chen L, Li M, Li J (2023). Applications and prospects of CRISPR/Cas999-mediated base editing in plant breeding. Current Issues in Molecular Biology 45(2):918-935. https://doi.org/10.3390/cimb45020059

Li Y, Qiu L, Liu X, Zhang Q, Zhuansun X, Fahima T, Krugman T, Sun Q, Xie C (2020). Glycerol-induced powdery mildew resistance in wheat by regulating plant fatty acid metabolism, plant hormones cross-talk, and pathogenesis-related genes. International Journal of Molecular Sciences 21:673-692. https://doi.org/10.3390/ijms21020673

Liang Z, Zhang K, Chen K, Gao C (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas9 system. Journal of Genetics and Genomics 41:63-68. https://doi.org/10.1016/j.jgg.2013.12.001

Liu C, Cao Y, Hua Y, Du G, Liu Q, Wei X, Sun T, Lin J, Wu M, Cheng Z, Wang K (2021). Concurrent disruption of genetic interference and increase of genetic recombination frequency in hybrid rice using CRISPR/Cas999. Frontiers in Plant Science 12:757152. https://doi.org/10.3389/fpls.2021.757152

Liu G, Li J, Godwin ID (2019). Genome editing by CRISPR/Cas9 in sorghum through biolistic bombardment. Methods in Molecular Biology 1931:169-183. https://doi.org/10.1007/978-1-4939-9039-9_12

Liu H, Ding Y, Zhou Y, Jin W, XieK, Chen LL (2017). CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants. Molecular Plant 10(3):530-532. https://doi.org/10.1016/j.molp.2017.01.003

Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T, Wu Q, Bartlett M, Jackson D (2021). Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nature Plants 7:287-294. https://doi.org/10.1038/s41477-021-00858-5

Liu Q, Yang F, Zhang J, Liu H, Rahman S, Islam S, Ma W, She M (2021). Application of CRISPR/Cas9 in Crop Quality Improvement. Int J Mol Sci 22(8):4206. https://doi.org/ 10.3390/ijms22084206.

Liu T, Zhang X, Li K, Yao Q, Zhong D, Deng Q, Lu Y (2023). Large-scale genome editing in plants: approaches, applications, and future perspectives. Current Opinion in Biotechnology 79:102875. https://doi.org/10.1016/j.copbio.2022.102875

Lorenzo CD, Debray K, Herwegh D, Develtere W, Impens L, Schaumont D, … Inzé D (2023). BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize. Plant Cell 35(1):218-238. https://doi.org/10.1093/plcell/koac243

Lou D, Wang H, Liang G, Yu D (2017). OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Frontiers in Plant Science 8:993. https://doi.org/10.3389/fpls.2017.00993

Lu Y, Zhu JK (2017). Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10(3):523-525. https://doi.org/10.1016/j.molp.2016.11.013

Lumaga RB, Azzali D, Fogliano V, Scalfi L, Vitaglione P (2012). Sugar and dietary fiber composition influence, by different hormonal response, the satiating capacity of a fruit-based and a β-glucan-enriched beverage. Food and Function 3(1):67-75. https://doi.org/10.1039/c1fo10065c

Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, … Liu YG (2015). A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant 8(8):1274-84. https://doi.org/10 10.1016/j.molp.2015.04.007

Mahmoud M, Zhou Z, Kaur R, Bekele W, Tinker NA, Singh J (2022). Toward the development of Ac/Ds transposon-mediated gene tagging system for functional genomics in oat (Avena sativa L.). Functional & Integrative Genomics 22(4):669-681. https://doi.org/10.1007/s10142-022-00861-9

Marini V, Nikulenkov F, Samadder P, Juul S, Knudsen BR, Krejci L (2023). MUS81 cleaves TOP1-derived lesions and other DNA-protein cross-links. BMC Biology 21(1):110. https://doi.org/10.1186/s12915-023-01614-1

Marraffini LA, Sontheimer EJ (2010). CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Reviews Genetics 11(3):181-190. https://doi.org/10.1038/nrg2749

Maughan PJ, Lee R, Walstead R, Vickerstaff RJ, Fogarty MC, Brouwer CR, … Jellen EN (2019). Genomic insights from the first chromosome-scale assemblies of oat (Avena spp.) diploid species. BMC Biology 17:92. https://doi.org/10.1186/s12915-019-0712-y.

Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013). Targeted mutagenesis in rice using CRISPR-Cas99 system. Cell Research 23:1233-1236. https://doi.org/10.1038/cr.2013.123.

Minkenberg B, Xie K, Yang Y (2017). Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes. Plant Journal 89(3):636-648. https://doi.org/10.1111/tpj.13399

Minkenberg B, Zhang J, Xie K, Yang Y. (2019). CRISPR-PLANT v2: an online resource for highly specific guide RNA spacers based on improved off-target analysis. Plant Biotechnology Journal 17(1):5-8. https://doi.org/10.1111/pbi.13025.

Mishra R, Joshi RK, Zhao K, (2020). Base editing in crops: current advances, limitations and future implications. Plant Biotechnology Journal 18(1):20-31. https://doi.org/10.1111/pbi.13225

Mitrofanov A, Alkhnbashi OS, Shmakov SA, Makarova KS, Koonin EV, Backofen (2021). CRISPRidentify: Identification of CRISPR arrays using machine learning approach. Nucleic Acids Research 49(4):e20. https://doi.org/10.1093/nar/gkaa1158.

Mohr T, Horstman J, Gu YQ, Elarabi NI, Abdallah NA, Thilmony R (2022). CRISPR-Cas9gene editing of the Sal1gene family in wheat. Plants 11(17):2259. https://doi.org/10.3390/plants11172259

Montenegro JD, Golicz AA, Bayer PE,Hurgobin B, Lee H, Chan CK, Visendi P, Lai K, DoleželJ, Batley J, Edwards D (2017). The pangenome of hexaploid bread wheat. Plant Journal 90(5):1007-1013. https://doi.org/10.1111/tpj.13515

Moreno-Mateos MA, Vejnar CE, Beaudoin J-D, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ. (2015). CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo. Nature Methods 12(10):982-988. https://doi.org/10.1038/nmeth.3543.

Moya-Beltran A, Makarova KS, Acuna LG, Wolf YI, Covarrubias PC, Shmakov SA, Silva C, Tolstoy I, Johnson DB, Koonin EV, Quatrini R (2021). Evolution of type IV CRISPR-Cas systems: insights from CRISPR loci in integrative conjugative elements of Acidithio bacillia. CRISPR Journal 4(5):656-672. https://doi.org/10.1089/crispr.2021.0051.

Naeem M, Alkhnbashi OS (2023). Current bioinformatics tools to optimize CRISPR/Cas9 experiments to reduce off-target effects. International Journal of Molecular Sciences 24:6261. https://doi.org/10.3390/ijms24076261

Naik BJ, Shimoga G, Kim SC, Manjulatha M, Subramanyam Reddy C, Palem RR, Kumar M, Kim SY, Lee SH (2022). CRISPR/Cas9 and nanotechnology pertinence in agricultural crop refinement. Frontiers in Plant Science 8(13):843575. https://doi.org/10.3389/fpls.2022.843575

Najera AV, Twyman RM, Christou P, Zhu C (2019). Applications of multiplex genome editing in higher plants. Current Opinion in Biotechnology 59:93-102. https://doi.org/10.1016/j.copbio.2019.02.015

Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology 31(8):691-693. https://doi.org/10.1038/nbt.2655.

Okada A, Arndell T, Borisjuk N, Sharma N, Watson-Haigh NS, Tucker EJ, Baumann U, Langridge P, Whitford R (2019). CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal 17(10):1905-1913. https://doi.org/10.1111/pbi.13106

Osakabe Y, Watanabe T, Sugano SS,Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016). Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Scientific Reports 6:26685. https://doi.org/10.1038/srep26685.

Osawa T, Inanaga H, Sato C, Numata T (2015). Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog. Molecular Cell 58(3):418-430. https://doi.org/10.1016/j.molcel.2015.03.018.

Pandey A,Khobra R, Mamrutha HM, Wadhwa Z, Krishnappa G, Singh G, Singh GP (2022). Elucidating the drought responsiveness in wheat genotypes. Sustainability 14(7):3957. https://doi.org/10.3390/su14073957

Park J, Bae S (2018). Cpf1-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cpf1. Bioinformatics 34(6):1077-1079. https://doi.org/10.1093/bioinformatics/btx695

Park J, Bae S, Kim J-S (2015). Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31(24):4014-4016. https://doi.org/10.1093/bioinformatics/btv537.

Pinello L, Canver MC, Hoban MD, Orkin SH, Kohn DB, Bauer DE, Yuan G-C (2016). Analyzing CRISPR genome-editing experiments with CRISPResso. Nature Biotechnology 34:695-697. https://doi.org/10.1038/nbt.3583

Porto EM, Komor AC, Slaymaker IM, Yeo GW (2020). Base editing: advances and therapeutic opportunities. Nature Reviews Drug Discovery 19:839-859. https://doi.org/10.1038/s41573-020-0084-6

Prado JR, Segers G, Voelker T, Carson D, Dobert R, Phillips J, Cook K, Cornejo C, Monken J, Grapes L, Reynolds T, Martino-Catt S (2014). Genetically engineered crops: from idea to product. Annual Review in Plant Biol 65:769-790. https://doi.org/10.1146/annurev-arplant-050213-040039.

Ray D, Gerber J, MacDonald G,West PC (2015). Climate variation explains a third of global crop yield variability. Nature Communication 6:5989. https://doi.org/10.1038/ncomms6989

Ren Q, Sretenovi S, Liu S, Tang X, Huang L, He Y, … Zhang Y (2021). PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nature Plants 7(1):25-33. https://doi.org/10.1038/s41477-020-00827-4

Reynolds MP, Lewis JM, Ammar K, Basnet BR, Crespo-Herrera L, Crossa J, … Braun HJ (2021). Harnessing translational research in wheat for climate resilience. Journal of Experimental Botany 72(14):5134-5157. https://doi.org/10.1093/jxb/erab256.

Rezk AA, El-Malky MM, El-Beltagi HS, Al-daej M, Attia KA (2023). Conventional breeding and molecular markers for blast disease resistance in rice (Oryza sativa L.). Phyton-International Journal of Experimental Botany 92(3):725-746. http://dx.doi.org/10.32604/phyton.2022.024645

Samai P, Pyenson N, Jiang WY, Goldberg GW, Hatoum-Aslan A, Marraffini LA (2015). Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161(5):1164-1174. https://doi.org/10.1016/j.cell.2015.04.027.

Sánchez-León S, Gil-Humanes J, Ozuna CV, GiménezMJ, Sousa C, Voytas DF, Barro F (2018). Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal 16(4):902-910. https://doi.org/10.1111/pbi.12837.

Sansaloni C, Schulthess U, Singh RP, Sonder K, Sukumaran S, Xiong W, Braun HJ (2021). Harnessing translational research in wheat for climate resilience. Journal of Experimental Botany 72(14):5134-5157. http://dx.doi.org/10.1093/jxb/erab256

Santosh Kumar VV, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV, Chinnusamy V (2020). CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants 26(6):1099-1110. https://doi.org/10.1007/s12298-020-00819-w

Sattar MN, Qurashi F, Iqbal Z, EL-Beltagi HS., Khurshid M (2023). Occurrence and molecular characteristics of pedilanthus leaf curl virus complex from the new hosts fenugreek and night jessamine in Pakistan. Physiology and Molecular Plant Pathology 126:102045. https://doi.org/10.1016/j.pmpp.2023.102045

Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017). Towards CRISPR/Cas crops - bringingtogether genomics and genome editing. New Phytologist 216(3):682-698. https://doi.org/10.1111/nph.14702

Schneider HM, Lor VS, Zhang X, Saengwilai P, Hanlon MT, Klein SP, Davis JL, Borkar AN, Depew CL, Bennett MJ,Kaeppler SM, Brown KM, Bhosale R, Lynch JP (2023). Transcription factor bHLH121 regulates root cortical aerenchyma formation in maize. Proceedings of the National Academy of Science USA 120(12):e2219668120. https://doi.org/10.1073/pnas.2219668120

Scholefield J, Harrison PT (2021). Prime editing – an update on the field. Gene Therapy 28:396-401. https://doi.org/10.1038/s41434-021-00263-9

Searchinger T, Waite R, Hanson C, Ranganathan J, Matthews E. (2019). Creating a sustainable food future. World Resources Report. Available at: https://www.wri.org/research/creating-sustainable-food-future

Serrat X, Kukhtar D, Cornes E, Esteve-Codina A, Benlloch H, Cecere G, Cerón J (2019). CRISPR editing of sftb-1/SF3B1 in Caenorhabditis elegans allows the identification of synthetic interactions with cancer-related mutations and the chemical inhibition of splicing. PLoS Genetics 15(10):e1008464. https://doi.org/10.1371/journal.pgen.1008464

Shallan MA, El-Beltagi HS, Mona AM, Amera TM (2010a). Chemical evaluation of pre-germinated brown rice and whole grain rice bread. Electronic Journal of Environmental, Agricultural & Food Chemistry 9(5):958-971.

Shallan MA, El-Beltagi HS, Mona AM, Amera TM, Sohir NA (2010b). Effect of amylose content and pre-germinated brown rice on serum blood glucose and lipids in experimental animal. Australian Journal of Basic and Applied Sciences 4:114-121.

Shan Q, Wang Y, Li J, Gao C (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols 9(10):2395-2410. http://dx.doi.org/10.1038/nprot.2014.157

Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L, Gao C (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31(8):686-688. https://doi.org/10.1038/nbt.2650

Shelake RM, Kadam US, Kumar R, Pramanik D, Singh AK, Kim JY (2022). Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. Plant Communication 3(6):100417. https://doi.org/10.1016/j.xplc.2022.100417

Shen C, Que Z, Xia Y, Tang N, Li D, He R, Cao M (2017). Knock out of the annexin gene OsAnn3 via CRISPR/Cas999-mediated genome editing decreased cold tolerance in rice. Journal of Plant Biology 60(6):539-547. https://doi.org/10.1007/s12374-016-0400-1

Sheng X, Sun Z, Wang X, Tan Y, Yu D, Yuan G, Yuan D, Duan M (2020). Improvement of the rice “easy-to-shatter” trait via CRISPR/Cas9-mediated mutagenesis of the qSH1 gene. Frontiers in Plant Science 11:619. https://doi.org/10.3389/fpls.2020.00619

Shewry PR (2009). Wheat. Journal of Experimental Botany 60(6):1537-1553. http://dx.doi.org/10.1093/jxb/erp058

Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security 3(3):307-327. https://doi.org/10.1007/s12571-011-0140-5

Shinwari ZK, Tanveer F, Khalil AT (2018). Ethical issues regarding CRISPR mediated genome editing. Current Issues in Molecular Biology 26:103-110. https://doi.org/10.21775/cimb.026.103

Shrawat AK, Lörz H (2006). Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnology Journal 4(6):575-603. http://dx.doi.org/10.1111/j.1467-7652.2006.00209.x

Singh B, Singh JP, Kaur A, Singh N (2016). Bioactive compounds in banana and their associated health benefits–A review. Food Chemistry 206:1-11. https://doi.org/10.1016/j.foodchem.2016.03.033

Smith J,Grizot S, Arnould S, Duclert A, Epinat J-C, ChamesP, PrietoJ, RedondoP, Blanco FJ, BravoJ, MontoyaG, PâquesF, Duchateau P (2006). A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research 34(22):e149. https://doi.org/10.1093/nar/gkl720

Sony SK, Kaul T, Motelb KFA, Thangaraj A, Bharti J, Kaul R, Verma R, Nehra M (2023). CRISPR/Cas9-mediated homology donor repair base editing confers glyphosate resistance to rice (Oryza sativa L.). Frontiers in Plant Science 14:1122926. https://doi.org/10.3389/fpls.2023.1122926

Stemmer M, Thumberger T, Keyer MD-S, Wittbrodt J, Mateo JL (2015). CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PloS One 10 (4):e0124633. https://doi.org/10.1371/journal.pone.0124633

Sun J, Liu H, Liu J, Cheng S, Peng Y, Zhang Q, Yan J, Liu H-J, Chen L-L (2019). CRISPR-Local: a local single-guide RNA (sgRNA) design tool for non-reference plant genomes. Bioinformatics 35(14):2501-2503. https://doi.org/10.1093/bioinformatics/bty970

Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016). Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant 9(4):628-631. https://doi.org/10.1016/j.molp.2016.01.001

Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016). Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature Communication 7:13274. https://doi.org/10.1038/ncomms13274

Tanaka W, Toriba T, Hirano HY (2014). Flower development in rice. In: Fornara F (Ed). The Molecular Genetics of Floral Transition and Flower Development. pp 221-262 Elsevier, Amsterdam.

Tang X, Ren Q, Yang L, Bao Y, Zhong Z, He Y, … Zhang Y (2019). Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal 17:1431-45. https://doi.org/10.1111/pbi.13068

Upadhyay SK, Kumar J, Alok A, Tuli R (2013). RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3(12): 2233–2238. https://doi.org/10.1534/g3.113.008847

Vogan AA, Higgs PG (2011). The advantages and disadvantages of horizontal gene transfer and the emergence of the first species. Biology Direct 6:1. https://doi.org/10.1186/1745-6150-6-1

Walton RT, Christie KA, Whittaker MN, Kleinstiver BP (2020). Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368:290-296. https://doi.org/10.1126/science.aba8853

Wang B, Zhu L, Zhao B, Zhao Y, Xie Y, Zheng Z, Li Y, Sun J, Wang H (2019). Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. Molecular Plant 12:597-602. https://doi.org/10.1016/j.molp.2019.03.006

Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922.PLoS One 11(4):e0154027. https://doi.org/10.1371/journal.pone.0154027

Wang K, Liang CCRF (2017). CRF: Detection of CRISPR arrays using random forest. PeerJ 5:e3219. https://doi.org/10.7717/peerj.3219

Wang W, Pan Q, He F, Akhunova A, Chao S, Trick H, Akhunov E (2018). Transgenerational CRISPRCas9 activity facilitates multiplex gene editing in allopolyploid wheat. e CRISPR Journal 1:65-74. https://doi.org/10.1089/crispr.2017.0010

Wang W, Pan Q, Tian B, He F, Chen Y, Bai G, Akhunova A, Trick HN, Akhunov E (2019). Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant Journal 100(2):251-264. https://doi.org/10.1111/tpj.14440

Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J (2014). Simultaneous editing of three homoeo alleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32(9). https://doi.org/https://doi.org/10.1038/nbt.2969

Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, Yu L, Ding X, Ding F, Hong N, Wang G, Jin S (2022). CRISPR/Cas9 genome editing technologies for plant improvement against biotic and abiotic stresses: advances, limitations, and future perspectives. Cells 11(23):3928. https://doi.org/10.3390/cells11233928

Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB (2013). TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Molecular Biology 83(3):279-285. https://doi.org/10.1007/s11103-013-0078-4

Whitehead A, Beck EJ, Tosh S, Wolever TM (2014). Cholesterol-lowering effects of oat β-glucan: A meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition 100(6):1413-1421. https://doi.org/10.3945/ajcn.114.086108

Wu TM, Huang JZ, Oung HM, Hsu YT, Tsai YC, Hong CY (2019). H2O2-based method for rapid detection of transgene-free rice plants from segregating CRISPR/Cas9 genome-edited progenies. International Journal of Molecular Sciences 20:3885. https://doi.org/10.3390/ijms20163885

Xiang X, Li C, Chen X, Dou H, Li Y, Zhang X, Luo Y (2019). CRISPR/Cas9-mediated gene tagging: a step-by-step protocol. Methods in Molecular Biology 1961:255-269. https://doi.org/10.1007/978-1-4939-9170-9_16

Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014). CasOT: A genome wide Cas9/gRNA off-target searching tool. Bioinformatics 30(8):1180-1182. https://doi.org/10.1093/bioinformatics/btt764

Xie S, Shen B, Zhang C, Huang X, Zhang Y (2014). sgRNACas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PloS One 9(6):e100448. https://doi.org/10.1371/journal.pone.0100448

Xu R, QinR, Li Het al. (2016). Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnology Journal 14:1-5. https://doi.org/10.1111/pbi.12669

Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J (2016). Rapid improvement of grain weight via highly efficient CRISPR/ Cas9-mediated multiplex genome editing in rice. Journal of Genetics and Genomics 43:529-532. https://doi.org/10.1016/j.jgg.2016.07.003

Yang Q, Zhong X, Li Q, Lan J, Tang H, Qi P, … Jiang Q (2020). Mutation of the D-hordein gene by RNA-guided Cas9 targeted editing reducing the grain size and changing grain compositions in barley Food Chemistry 311:125892. https://doi.org/10.1016/j.foodchem.2019.125892

YanWX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, Sothiselvam S, Garrity AJ, Chong SR, Makarova KS, Koonin EV, Cheng DR, Scott DA (2019). Functionally diverse type V CRISPR-Cas9 systems. Science 363:88-91. https://doi.org/10.1126/science.aav7271

Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin HC, Coe RA, Kretzschmar T, Gray JE (2017). CRISPR-Cas9 and CRISPRCpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Reports 36:745-757. https://doi.org/10.1007/s00299-017-2118-z

Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, Tang J, Yu X, Liu G, Luo L (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding 39:47. https://doi.org/10.1007/s11032-019-0954-y

Zhang H, GouF, ZhangJ, Liu W, Li Q, Mao Y, Ramón BotellaJ, Zhu J (2016). TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnology Journal 14(1):186-194. https://doi.org/10.1111/pbi.12372

Zhang M, Cao Y, Wang Z, Wang ZQ, Shi J, Liang X, SongW, Chen Q, Lai J, Jiang C (2018). A retrotransposon in an HKT1family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytologist 217:1161-1176. https://doi.org/10.1111/pbi.12372

Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017). Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant Journal 91:714-724. https://doi.org/10.1111/tpj.13599

Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J, Gao C (2016). Efficient and transgene free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications 7:12617. https://doi.org/10.1038/ncomms12617

Zhou J, Deng K, Cheng Y, Zhong Z, Tian L, Tang X, Tang A, Zheng X, Zhang T, Qi Y, Zhang Y (2017). CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Frontiers in Plant Science 8:1598. https://doi.org/10.3389/fpls.2017.01598

Zhu C, Bortesi L, Baysal C, Twyman RM, Fischer R, Capell T, Schillberg S, Christou P (2017). Characteristics of genome editing mutations in cereal crops. Trends in Plant Science 22(1):38-52. http://dx.doi.org/10.1016/j.tplants.2016.08.009

Zhu J, Song N, Sun S, Yang W, Zhao H, Song W, Lai J (2016). Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. Journal of Genetics and Genomics 43:25-36. https://doi.org/10.1016/j.jgg.2015.10.006

Downloads

Published

2024-02-13

How to Cite

ELARABI, N. I., HESHAM, A. E.-L., EL-BELTAGI, H. S., REZK, A. A., SHALABY, T. A., AL-SAIKHAN, M. S., MOHAMED, A. A., & Abdelhadi, A. A. (2024). Cereal crop genome editing tools and their applications to sustainable agriculture. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), 13494. https://doi.org/10.15835/nbha52113494

Issue

Section

Review Articles
CITATION
DOI: 10.15835/nbha52113494

Most read articles by the same author(s)

1 2 3 > >>