Promoter Analysis and Transcriptional Profiling of Ginkgo biloba 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase (GbHMGR) gene in Abiotic Stress Responses
DOI:
https://doi.org/10.15835/nbha4319416Abstract
The terpene trilactones (TTLs) are believed to be important for the pharmacological properties of Ginkgo biloba leaves extract. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a critical enzyme involved in the biosynthetic pathway of TTLs. In this study, an 1.2-kb fragment of 5’ flanking region of the HMGR gene (GbHMGR), was isolated from G. biloba by genome walking. Extensive sequence analysis revealed the presence of evolutionarily conserved and over-represented putative cis-acting elements in light-regulated transcription, hormone signaling (gibberellic acid, jasmonate and salicylic acid), elicitor and stress responses (cold/dehydration responses), and plant defense signaling (W-box/WRKY) that are common to the promoter region of GbHMGR. EMSA analysis suggested possible functionality of W-box in GbHMGR promoter region. The behavior of gene transcripts in ginkgo callus upon light, low temperature, MeJA and SA treatments further verified the regulatory function of GbHMGR promoter. A significant positive relationship between gene expression level and total TTL contents suggested that GbHMGR might be one of key genes involved in TTL biosynthesis in G. biloba.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Yongling LIAO, Feng XU, Xiaohua HUANG, Weiwei ZHANG, Hua CHENG, Linling LI, Shuiyuan CHENG, Yongbao SHEN
This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.