Unveiling the nutritional value: Phytochemical profiling of Greek Rosa canina L. germplasm across ripening stages and fertilization treatment

Authors

  • Katerina GRIGORIADOU Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization- DIMITRA, P.C. 57001, PO Box 60458 Thessaloniki (GR)
  • Georgia TANOU Soil & Water Resources Institute, Hellenic Agricultural Organization-DIMITRA, P.C. 57001 Thermi (GR)
  • Konstantinos KOULARMANIS Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization- DIMITRA, P.C. 57001, PO Box 60458 Thessaloniki (GR)
  • Chrysanthi POLYCHRONIADOU Soil & Water Resources Institute, Hellenic Agricultural Organization-DIMITRA, P.C. 57001 Thermi (GR)
  • Katerina PAPANASTASI Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization- DIMITRA, P.C. 57001, PO Box 60458 Thessaloniki (GR)
  • Georgios STAVROPOULOS KORRES S.A. Natural products, 57th Km NR Athens-Lamia, Oinofyta Viotias, PC 32011 (GR)
  • Eleni MALOUPA Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization- DIMITRA, P.C. 57001, PO Box 60458 Thessaloniki (GR)

DOI:

https://doi.org/10.15835/nbha52414200

Keywords:

ascorbic acid, fertilization regimes, ripening stages, total antioxidant capacity, total phenolic content

Abstract

Rosa canina L. is among the woody species which thrive through diverse habitats and is distinguished for its high nutritional value. In recent years R. canina L. has raised awareness due to its high demand in cosmetology and pharmacology. This study focuses on the results of a three-year experimental site including four R. canina L. genotypes treated with two fertilization regimes (conventional, organic) and harvested under four ripening stages.  Τhe results indicate the most suitable period for harvesting the rosehip fruit in terms of ascorbic acid, antioxidant capacity and total phenolic compounds. This study recommends the first two ripening stages in order to achieve the highest concentration of ascorbic acid (4.53 mg g-1 F.W.). The last ripening stage came across as being the most appropriate stage for the highest total phenolic content (31.2 mg GAE g-1 FW) and in the meantime, this study highlights that the distinct ripening stages do not fluctuate the levels of total antioxidant capacity. Overall, the current study tries to identify the nutritional potential of domesticated R. canina L. and specify which of the ripening stages and fertilization regimes maximize its post-harvest value.

References

Al-Yafeai A, Bellstedt P, Böhm V (2018). Bioactive compounds and antioxidant capacity of Rosa rugosa depending on degree of ripeness. Antioxidants 7(10):134. https://doi.org/10.3390/antiox7100134

Andersson U, Berger K, Högberg A, Landin-Olsson M, Holm C (2012). Effects of rose hip intake on risk markers of type 2 diabetes and cardiovascular disease: a randomized, double-blind, cross-over investigation in obese persons. European Journal of Clinical Nutrition 66(5):585-590. https://doi.org/10.1038/ejcn.2011.203

Asami DK, Hong YJ, Barrett DM, Mitchell AE (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry 51(5):1237-1241. https://doi.org/10.1021/jf020635c

Barros L, Carvalho AM, Ferreira IC (2011). Exotic fruits as a source of important phytochemicals: Improving the traditional use of Rosa canina fruits in Portugal. Food Research International 44(7):2233-2236. https://doi.org/10.1016/j.foodres.2010.10.005

Bozhuyuk MR, Ercisli S, Karatas N, Ekiert H, Elansary HO, Szopa A (2021). Morphological and biochemical diversity in fruits of unsprayed Rosa canina and Rosa dumalis ecotypes found in different agroecological conditions. Sustainability 13(14):8060. https://doi.org/10.3390/su13148060

Bremner JM (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science 55(1):11-33. https://doi.org/10.1017/S0021859600021572

Chrubasik C, Roufogalis BD, Müller‐Ladner U, Chrubasik S (2008). A systematic review on the Rosa canina effect and efficacy profiles. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 22(6):725-733. https://doi.org/10.1002/ptr.2400

Dias C, Ribeiro T, Rodrigues AC, Vasconcelos MW, Ferrante A, Pintado M (2023). Relationship between minerals and physicochemical parameters with fruit quality in ‘Rocha’pear orchards. Plant and Soil 1-13. https://doi.org/10.1007/s11104-023-06137-w

Dolek U, Gunes M, Genc N, Elmastas M (2018). Total phenolic compound and antioxidant activity changes in rosehip (Rosa sp.) during ripening. Journal of Agricultural Science and Technology 20(4):817-828.

Elmastaş M, Demir A, Genç N, Dölek Ü, Güneş M (2017). Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food Chemistry 235:154-159. https://doi.org/10.1016/j.foodchem.2017.05.004

Ercisli S (2007). Chemical composition of fruits in some rose (Rosa spp.) species. Food Chemistry 104(4):1379-1384. https://doi.org/10.1016/j.foodchem.2007.01.053

Frias-Moreno MN, Olivas-Orozco GI, Gonzalez-Aguilar GA, Benitez-Enriquez YE, Paredes-Alonso A, Jacobo-Cuellar J L, ... Parra-Quezada RA (2019). Yield, quality and phytochemicals of organic and conventional raspberry cultivated in Chihuahua, Mexico. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(2):522-530. https://doi.org/10.15835/nbha47211385

Grigoriadou K, Tanou G, Karapatzak E, Papanastasi K, Koularmanis K, Tsaroucha I, ... Maloupa E (2023). Enhancing the propagation and cultivation framework of Greek Rosa canina L. germplasm via sustainable management techniques. Agronomy 14(1):25. https://doi.org/10.3390/agronomy14010025

Hallmann E (2012). The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. Journal of the Science of Food and Agriculture 92(14):2840-2848. https://doi.org/10.1002/jsfa.5617

Hidalgo GI, Almajano MP (2017). Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants 6(1):7. https://doi.org/10.3390/antiox6010007

Ivanišová E, Horňák M, Čech M, Harangozo Ľ, Kačániová M, Grygorieva O, Kowalczewski PŁ (2023). Polyphenol content, mineral compounds composition, antimicrobial and antioxidant activities of selected medicinal herbs from Slovak Republic. Applied Sciences 13(3):1918. https://doi.org/10.3390/app13031918

Kapoor L, Simkin AJ, George Priya Doss C, Siva R (2022). Fruit ripening: dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biology 22(1):27. https://doi.org/10.1186/s12870-021-03411-w

Kazaz S, Bayda RH, Erbas S (2009). Variations in chemical compositions of Rosa damascena Mill. and Rosa canina L. fruits. Czech Journal of Food Sciences 27(3):178-184. https://doi.org/10.17221/5/2009-cjfs

Kovacs S, Facsar G, Udvardy L, Tóth M (2004). Phenological, morphological and pomological characteristics of some rose species found in Hungary. In: I International Rose Hip Conference 690, pp 71-76. https://doi.org/10.17660/ActaHortic.2005.690.9

Kovacs S, Tóth MG, Facsar G (1999). Fruit quality of some rose species native in Hungary. In: Eucarpia symposium on Fruit Breeding and Genetics 538:103-108. https://doi.org/10.17660/ActaHortic.2000.538.13

Kunc N, Hudina M, Osterc G, Bavcon J, Ravnjak B, Mikulič-Petkovšek M (2023). Phenolic compounds of rose hips of some rosa species and their hybrids native grown in the South-West of Slovenia during a two-year period (2020–2021). Foods 12(10):1952. https://doi.org/10.3390/foods12101952

Macit M, Aras A, Güven EÇ, Bakir S (2023). Investigating the content and bioaccessibility of phenolic compounds in roots of Rosa canina L. and Rosa pimpinellifolia L. Yuzuncu Yıl University Journal of Agricultural Sciences 33(2):163-173. https://doi.org/10.29133/yyutbd.1231881

Medveckienė B, Kulaitienė J, Levickienė D, Hallmann E (2021). The effect of ripening stages on the accumulation of carotenoids, polyphenols and vitamin C in rosehip species/cultivars. Applied Sciences 11(15):6761. https://doi.org/10.3390/app11156761

Medveckienė B, Kulaitienė J, Vaitkevičienė N, Levickienė D, Bunevičienė K (2022). Effect of harvesting in different ripening stages on the content of the mineral elements of rosehip (Rosa spp.) fruit flesh. Horticulturae 8(6):467. https://doi.org/10.3390/horticulturae8060467

Medveckienė B, Levickienė D, Vaitkevičienė N, Vaštakaitė-Kairienė V, Kulaitienė J (2023). Changes in pomological and physical parameters in rosehips during ripening. Plants 12(6):1314. https://doi.org/10.3390/plants12061314

Nojavan S, Khalilian F, Kiaie FM, Rahimi A, Arabanian A, Chalavi S (2008). Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. Journal of Food Composition and Analysis 21(4):300-305. https://doi.org/10.1016/j.jfca.2007.11.007

Odriozola-Serrano I, Nogueira DP, Esparza I, Vaz AA, Jiménez-Moreno N, Martín-Belloso O, Ancín-Azpilicueta C (2023). Stability and bioaccessibility of phenolic compounds in rosehip extracts during in vitro digestion. Antioxidants 12(5):1035. https://doi.org/10.3390/antiox12051035

Peña F, Valencia S, Tereucán G, Nahuelcura J, Jiménez-Aspee F, Cornejo P, Ruiz A (2023). Bioactive compounds and antioxidant activity in the fruit of rosehip (Rosa canina L. and Rosa rubiginosa L.). Molecules 28(8):3544. https://doi.org/10.3390/molecules28083544

Roman I, Stănilă A, Stănilă S (2013). Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania. Chemistry Central Journal 7:1-10. https://doi.org/10.1186/1752-153X-7-73

Scalbert A, Monties B, Janin G (1989). Tannins in wood: comparison of different estimation methods. Journal of Agricultural and Food Chemistry 37(5):1324-1329. https://doi.org/10.1021/jf00089a026

Stoian-Dod RL, Dan C, Morar IM, Sestras AF, Truta AM, Roman G, Sestras RE (2023). Seed germination within genus Rosa: The complexity of the process and influencing factors. Horticulturae 9(8):914. https://doi.org/10.3390/horticulturae9080914

Waghmare I, Bharati A (2023). Antioxidant activity of rose hip. International Journal for Research 11(1). https://doi.org/10.22214/ijraset.2023.48696

Yilmaz SO, Ercisli S (2011). Antibacterial and antioxidant activity of fruits of some rose species from Turkey. Romanian Biotechnological Letters 16(4):6407-6411.

Downloads

Published

2024-12-18

How to Cite

GRIGORIADOU, K., TANOU, G., KOULARMANIS, K., POLYCHRONIADOU, C., PAPANASTASI, K., STAVROPOULOS, G., & MALOUPA, E. (2024). Unveiling the nutritional value: Phytochemical profiling of Greek Rosa canina L. germplasm across ripening stages and fertilization treatment. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(4), 14200. https://doi.org/10.15835/nbha52414200

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52414200

Most read articles by the same author(s)