Analysis of the impact of watershed management practices, vegetation, and land use on soil erosion using EPM-IntErO modelling in Ceará’s semi-arid region

Authors

  • Alvanil M. de SOUZA Federal University of Alfenas, Graduate Program in Environmental Sciences, Alfenas, MG (BR)
  • Guilherme H.E. LENSE Federal University of Alfenas, Graduate Program in Environmental Sciences, Alfenas, MG (BR)
  • Derielsen B. SANTANA Federal University of Alfenas, Graduate Program in Environmental Sciences, Alfenas, MG (BR)
  • Felipe G. RUBIRA Federal University of Alfenas, Institute of Natural Sciences, R. Gabriel Monteiro da Silva, 700, Alfenas, Minas Gerais (BR)
  • Ronaldo L. MINCATO Federal University of Alfenas, Institute of Natural Sciences, R. Gabriel Monteiro da Silva, 700, Alfenas, Minas Gerais (BR)
  • Joaquim E.B. AYER University Center of Paulínia, Department of Chemistry, Paulínia, São Paulo (BR)
  • Velibor SPALEVIC University of Montenegro, Biotechnical faculty, 15 M Lalica, Podgorica (ME) https://orcid.org/0000-0002-7800-2909
  • Tin LUKIĆ University of Novi Sad, Department of Geography, Tourism and Hotel Management, Faculty of Sciences, Novi Sad (RS)
  • Slavomir CERNANSKY Comenius University Bratislava, Faculty of Natural Sciences, Bratislava (SK)
  • Branislav DUDIC Comenius University Bratislava, Faculty of Management, Bratislava (SK)

DOI:

https://doi.org/10.15835/nbha52414129

Keywords:

IntErO model, land management, semi-arid regions, soil and water erosion, sustainability

Abstract

The semi-arid region of Ceará, located in Northeast Brazil, is typically characterized by low rainfall, high temperatures, and sparse vegetation – conditions generally associated with reduced soil erosion rates. However, the region's fragile soils, which are shallow, nutrient-poor, and particularly susceptible to degradation, exacerbate the erosion. This degradation poses a significant threat to soil fertility, agricultural productivity, and environmental sustainability in the area. The primary objective of this study was to quantify soil loss in Ceará and to challenge the prevailing assumption that semi-arid regions inherently experience minimal erosion due to limited rainfall. The Intensity of Erosion and Outflow (IntErO) model was used, in conjunction with remote sensing data and geographic information system (GIS) technologies. Through this approach, we estimated an average soil loss rate of 9.7 Mg ha⁻¹ yr⁻¹. The results indicate that 38% of Ceará’s land area experiences soil loss rates exceeding tolerance limits, particularly in regions lacking vegetation, as well as in agricultural lands and pastures. These elevated erosion rates are largely attributed to the area’s poor soil properties, occasional intense rainfall events, and unsustainable land management practices. The findings underscore the urgent need for improved management of soil erosion processes to address these challenges. Implementing targeted soil conservation strategies and policies that promote sustainable land use is essential for mitigating water erosion, safeguarding long-term agricultural productivity, and enhancing environmental and socioeconomic sustainability in semi-arid regions.

References

Aleksova B, Lukić T, Milevski I, Spalević V, Marković SB (2023). Modelling water erosion and mass movements (Wet) by using GIS-based multi-hazard susceptibility assessment approaches: A case study—Kratovska Reka Catchment (North Macedonia). Atmosphere 14:1139. https://doi.org/10.3390/atmos14081139

Aleksova B, Milevski I, Dragićević S, Lukić T (2024). GIS-based integrated multi-hazard vulnerability assessment in Makedonska Kamenica municipality, North Macedonia. Atmosphere 15(7):774. https://doi.org/10.3390/atmos15070774

Alewell C, Borrelli P, Meusburger K, Panagos P (2019). Using the USLE: Chances, challenges and limitations of soil erosion modeling. International Soil and Water Conservation Research 7(3):203-225. https://doi.org/10.1016/j.iswcr.2019.05.004

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22(6):711-728. https://doi.org/10.1127/0941-2948/2013/0507

Bertol I, Almeida JA (2000). Tolerância de perda de solo por erosão para os principais solos do Estado de Santa Catarina. [Soil loss tolerance due to erosion for the main soils of the State of Santa Catarina.] Revista Brasileira de Ciência do Solo 24(3):657-668. https://doi.org/10.1590/S0100-06832000000300018

Bertol I, Cassol EA, Barbosa FT (2019). Erosão do solo. [Water erosion] In: Bertol I, De Maria IC, Souza LS (Eds). Manejo e conservação do solo e da água [Soil and water management and conservation] pp. 423-460. Viçosa - MG: SBCS.

Bezak N, Borrelli P, Mikoš M, Auflič MJ, Panagos P (2024). Towards multi-model soil erosion modelling: An evaluation of the Erosion Potential Method (EPM) for global soil erosion assessments. Catena 234:107596. https://doi.org/10.1016/j.catena.2023.107596

De Sousa Barbosa WC, Guerra AJT, Valladares GS (2024). Soil erosion modeling using the revised universal soil loss equation and a geographic information system in a watershed in the Northeastern Brazilian Cerrado. Geosciences 14(3):78. https://doi.org/10.3390/geosciences14030078

Dragičević N, Karleuša B, Ožanić N (2016). A review of the Gavrilović method (erosion potential method) application. Gradjevinar 68:715-725. https://doi.org/10.14256/JCE.1602.2016

Efthimiou N, Lykoudi E, Karavitis C (2017). Comparative analysis of sediment yield estimations using different empirical soil erosion models. Hydrological Sciences Journal 62:2674-2694. https://doi.org/10.1080/02626667.2017.1404068

EMBRAPA (2014). Sistema de Informação de Solos Brasileiros – SISolos [Brazilian Soil Information System - SISolos]. Empresa Brasileira de Pesquisa Agropecuária. Brasília - DF, Embrapa Solos e Embrapa Informática.

EMBRAPA (2017). Levantamento exploratório de reconhecimento de solos do estado do Ceará [Exploratory survey of soil recognition in the state of Ceará]. Empresa Brasileira de Pesquisa Agropecuária, Rio de Janeiro, Embrapa Solos, Escala 1:6,000,000.

ESRI (2016). Environmental Systems Research Institute. ARCGIS Professional GIS for the Desktop Version 10.5. Redlands, California, Software.

FUNCEME (2012). Levantamento de reconhecimento de média intensidade dos solos - Mesorregião do Sul Cearense [Medium-intensity soil reconnaissance survey - Southern Ceará Mesoregion]. Fortaleza, Fundação Cearense de Meteorologia e Recursos Hídricos, pp 280.

Gavrilovic S (1962). A method for estimating the average annual quantity of sediments according to the potency of erosion. Bulletin of the Faculty of Forestry 26:151-168.

Gavrilovic S (1972). Engineering of flash floods and erosion. Izgradnja. Beograd.

Guerra AJT, Fullen MA, Jorge MDCO, Alexandre ST (2014). Soil erosion and conservation in Brazil. Anuário do Instituto de Geociências 37(1):81-91.

IBGE (2023). Panorama do Estado do Ceará. Instituto Brasileiro de Geografia e Estatística.

Kostadinov S, Braunović S, Dragićević S, Zlatić M, Dragović N, Rakonjac N (2018). Effects of erosion control works: Case study – Grdelica Gorge, the South Morava River (Serbia). Water 10:1094. https://doi.org/10.3390/w10081094

Kostadinov S, Zlatić M, Dragićević S, Novković I, Košanin O, Borisavljević A, Lakićević M, & Mladjan D (2014). Anthropogenic influence on erosion intensity changes in the Rasina river watershed-Central Serbia. Fresenius Environmental Bulletin 23(1a):254-263.

Lense GHE, Avanzi JC, Parreiras TC, Mincato RL (2020). Effects of deforestation on water erosion rates in the Amazon Region. Revista Brasileira de Ciências Agrárias 15(4):1-7. https://doi.org/10.5039/agraria.v15i4a8500

Li L, Du S, Wu L, Liu G (2009). An overview of soil loss tolerance. Catena 78(2):93-99. https://doi.org/10.1016/j.catena.2009.03.007

Lima ÉR, Silva RAD, Souza EAM, Amurim AILC, Lichston JE (2019). Perfil dos Agricultores Familiares da Agrovila Canudos, Ceará-Mirim/RN, e Aceitação do Carthamus tinctorius L. Oleaginosa Promissora para Biodiesel. Nature and Conservation 12(3):17-24. https://doi.org/10.6008/CBPC2318-2881.2019.003.0003

Lima MTV, Oliveira CW, Moura-Fé MM (2021). Análise Multicritério em Geoprocessamento como Contribuição ao Estudo da Vulnerabilidade à Erosão no Estado do Ceará [Multicriteria analysis in geoprocessing as a contribution to the study of vulnerability to erosion in the State of Ceará]. Revista Brasileira de Geografia Física 14(5):3156-3172. https://doi.org/10.26848/rbgf.v14.5.p3156-3172

Lima RV, Gamarra-Rojas G (2017). Camponeses e a Mandalla no Semiárido Brasileiro: Reflexões sobre Sustentabilidade com Base em um Estudo de Caso com Abordagem Agroecossistêmica. [Peasants and the Mandalla in the Brazilian semiarid region: reflections on sustainability based on a case study with an agroecosystemic approach]. Cadernos de Ciência & Tecnologia 34(2):161-195. http://www.repositorio.ufc.br/handle/riufc/32493

Manojlović S, Antić M, Šantić D, Sibinović M, Carević I, & Srejić T (2018). Anthropogenic impact on erosion intensity: Case study of rural areas of Pirot and Dimitrovgrad municipalities, Serbia. Sustainability 10(3):826. https://doi.org/10.3390/su10030826

Mapbiomas Project (2019). Coleção 5 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil.

Medeiros GOR, Giarolla A, Sampaio G, Marinho MA (2016). Estimates of annual soil loss rates in the State of São Paulo, Brazil. Revista Brasileira de Ciência do Solo 40:1-18. https://doi.org/10.1590/18069657rbcs20150497

Milanesi L, Pilotti M, Clerici A (2015). The application of the erosion potential method to alpine areas: Methodological improvements and test case. In: Lollino G, Arattano M, Rinaldi M, Giustolisi O, Marechal JC, Grant G (Eds). Engineering Geology for Society and Territory, Volume 3. Cham: Springer, pp 347-50. https://doi.org/10.1007/978-3-319-09054-2_73

Miranda EE (2005). Brasil em Relevo. Campinas, Embrapa Monitoramento por Satélite.

Montanarella L, Badraoui M, Chude V, Costa IDS, Mamo T, Yemefack M, ... McKenzie N (2015). Status of the world’s soil resources main report. FAO eBooks. http://repositorio.ucr.ac.cr/handle/10669/78011

Monteiro JB, Zanella ME (2019). Eventos Extremos no Estado do Ceará, Brasil: Uma Análise Estatística de Episódios Pluviométricos no Mês de Março de 2019 [Extreme events in the State of Ceará, Brazil: a statistical analysis of rainfall episodes in march 2019]. GeoTextos 15(2):149-173. https://doi.org/10.9771/geo.v15i2.32093

Pavlova-Traykova E, Dimitrov DP (2023). Soil erosion rates based on anatomical changes in exposed roots – case study from southwest Bulgaria. Silva Balcanica 24(3):27-33. https://doi.org/10.3897/silvabalcanica.24.e116223

Polidoro JC, Freitas PL, Hernani LC, Anjos LHC, Rodrigues RAR, Cesário FV, Andrade AG, Ribeiro JL (2021). Potential impact of plans and policies based on the principles of conservation agriculture on the control of soil erosion in Brazil. Land Degradation & Development 32(12):3457-3468. https://doi.org/10.22541/au.158750264.42640167

Polovina S, Radić B, Ristić R, Milčanović V (2024). Application of remote sensing for identifying soil erosion processes on a regional scale: An innovative approach to enhance the erosion potential model. Remote Sensing 16:2390. https://doi.org/10.3390/rs16132390

Ribeiro Filho JC, Palácio HAQ, Andrade EM, Santos JCN, Brasil JB (2017). Rainfall characterization and sedimentological responses of watersheds with different land uses to precipitation in the semiarid region of Brazil. Revista Caatinga 30(2):468-478. https://doi.org/10.1590/1983-21252017v30n222rc

Sakuno NRR, Guiçardi ACF, Spalevic V, Avanzi JC, Silva MLN, Mincato RL (2020). Adaptation and application of the erosion potential method for tropical soils. Revista Ciência Agronômica 51(1):1-20. https://doi.org/10.5935/1806-6690.20200004

Sestras P, Mircea S, Cîmpeanu SM, Teodorescu R, Roșca S, Bilașco Ș, Rusu T, Salagean T, Dragomir LO, Marković R, Spalević V (2023). Soil erosion assessment using the intensity of erosion and outflow model by estimating sediment yield: case study in river basins with different characteristics from Cluj County, Romania. Applied Sciences 13(16):9481. https://doi.org/10.3390/app13169481

Sousa FRC, Paula DP (2019). Análise de Perda do Solo por Erosão na Bacia Hidrográfica do Rio Coreaú (Ceará-Brasil) [Analysis of soil loss due to erosion in the Coreaú River Basin (Ceará-Brazil)]. Revista Brasileira de Geomorfologia 20(3):491-507. https://doi.org/10.20502/rbg.v20i3.1393

Spalevic V (1999). Application of computer-graphic methods in the studies of draining out and intensities of ground erosion in the Berane Valley. Master Thesis, Faculty of Agriculture, University of Belgrade, Serbia, pp 135.

Spalevic V (2011). Impact of land use on runoff and soil erosion in Polimlje. Ph.D. Thesis, Faculty of Agriculture, University of Belgrade, Serbia, pp 260. https://doi.org/10.13140/RG.2.2.25228.36486

Spalevic V, Barati AA, Goli I, Movahhed Moghaddam S, Azadi H. (2024). Do changes in land use and climate change overlap? An analysis of the World Bank Data. Land Degradation & Development 1(16):1-16. https://doi.org/10.1002/ldr.5259

Spalevic V, Barovic G, Vujacic D, Curovic M, Behzadfar M, Djurovic N, Dudic B, Billi P (2020). The impact of land use changes on soil erosion in the river basin of Miocki Potok, Montenegro. Water 12(11):2973. https://doi.org/10.3390/w12112973

Spalevic V, Dlabac A, Spalevic B, Fustic B, Popovic V (2000). Application of computer-graphic methods in the research of runoff and intensity of ground erosion – I Program “River Basins.” Agriculture and Forestry 46(1-2):19-36.

Srejić T, Manojlović S, Sibinović M, Bajat B, Novković I, Milošević MV, Carević I, Todosijević M, Sedlak MG (2023). Agricultural land use changes as a driving force of soil erosion in the Velika Morava River Basin, Serbia. Agriculture 13(4):778. https://doi.org/10.3390/agriculture13040778

Tavares AS, Spalevic V, Avanzi JC, Nogueira DA, Silva MLN, Mincato RL (2019). Modeling of water erosion by the erosion potential method in a pilot subbasin in Southern Minas Gerais. Semina: Ciências Agrárias 40(2):555-572. https://doi.org/10.5433/1679-0359.2019v40n2p555

Tomasella J, Vieira RMSP, Barbosa AA, Rodriguez DA, De Oliveira Santana M, Sestini MF (2018). Desertification trends in the Northeast of Brazil over the Period 2000-2016. International Journal of Applied Earth Observation and Geoinformation 73:197–206. https://doi.org/10.1016/j.jag.2018.06.012

Tošić R, Lovrić N, Dragićević S (2019). Assessment of the impact of depopulation on soil erosion: Case study – Republika Srpska (Bosnia and Herzegovina). Carpathian Journal of Earth and Environmental Sciences 14(2):505-518. https://doi.org/10.26471/cjees/2019/014/099

Vieira RMSP, Tomasella J, Barbosa AA, Martins MA, Rodriguez DA, Rezende FSD, Carriello F, Santana MDO (2020). Desertification risk assessment in Northeast Brazil: Current trends and future scenarios. Land Degradation and Development 32(1):224-240. https://doi.org/10.1002/ldr.3681

Vujačić D, Milevski I, Mijanović D, Vujović F, Lukić T (2023). Initial results of comparative assessment of soil erosion intensity using the WIntErO model: A case study of Polimlje and Shirindareh drainage basins. Carpathian Journal of Earth and Environmental Sciences 18(2):385-404. https://doi.org/10.26471/cjees/2023/018/267

Wischmeier WH, Smith DD (1978). Predicting rainfall erosion losses: a guide to conservation planning. Supersedes Agriculture Handbook. United States Department of Agriculture, Washington, pp 67.

Downloads

Published

2024-11-13

How to Cite

de SOUZA, A. M., LENSE, G. H., SANTANA, D. B., RUBIRA, F. G., MINCATO, R. L., AYER, J. E., SPALEVIC, V., LUKIĆ, T., CERNANSKY, S., & DUDIC, B. (2024). Analysis of the impact of watershed management practices, vegetation, and land use on soil erosion using EPM-IntErO modelling in Ceará’s semi-arid region. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(4), 14129. https://doi.org/10.15835/nbha52414129

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52414129

Most read articles by the same author(s)

1 2 > >>