Diagnostic study of nitrogen nutrition in cotton based on unmanned aerial vehicle RGB images

Authors

  • Lu WANG Shihezi University College of Agriculture/ The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi 832003 (CN)
  • Qiushuang YAO Shihezi University College of Agriculture/ The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi 832003 (CN)
  • Ze ZHANG Shihezi University College of Agriculture/ The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi 832003 (CN)
  • Shizhe QIN Shihezi University College of Agriculture/ The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi 832003 (CN)
  • Hongyu WANG Shihezi University College of Agriculture/ The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi 832003 (CN)
  • Feng XU Shihezi University College of Agriculture/ The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi 832003 (CN)
  • Mi YANG Shihezi University College of Agriculture/ The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi 832003 (CN)
  • Xin LV Shihezi University College of Agriculture/ The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi 832003 (CN)
  • Lulu MA Shihezi University College of Agriculture/ The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi 832003 (CN)

DOI:

https://doi.org/10.15835/nbha52213728

Keywords:

composite score, image features, machine learning, nitrogen nutrition index

Abstract

Nitrogen fertilizer levels significantly affect crop growth and development, necessitating precision management. Most studies focus on nitrogen nutrient estimation using vegetation indices and textural features, overlooking the diagnostic potential of color features. Hence, we investigated cotton nitrogen nutrition status using unmanned aerial vehicle (UAV) image features and the nitrogen nutrient index (NNI). Random frog algorithm - and random forest-screened image feature sets significantly correlated with the NNI, which were substituted into four machine learning algorithms for NNI estimation modeling. The composite scores (F) of optimal image feature sets were calculated using the coefficient of variation method for comprehensive cotton nitrogen nutrient diagnosis. Validation of the model for determining the critical nitrogen concentration in cotton yielded a coefficient of determination R2 = 0.89, root mean square error RMSE = 0.50 g (100 g)-1, and mean absolute error MAE = 0.44, demonstrating improved performance. Additionally, our novel NNI estimation model constructed based on the optimal image feature sets exhibited R2c = 0.97, RMSEc = 0.02, MAEc = 0.02, R2v = 0.85, RMSEv = 0.05, and MAEv = 0.04. Polynomial fitting of the composite index with NNI indicated that the model was reliable and yielded the following diagnostic criterion: 0.48 < F2 < 0.67 indicated nitrogen overapplication, whereas F2 < 0.48 or F2  > 0.67 indicated nitrogen deficiency. This study demonstrates the superior effectiveness of using UAV RGB image feature sets for NNI estimation and the quick, accurate diagnosis of cotton nitrogen levels, which will help guide nitrogen fertilizer application.

References

Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, ... Bareth G (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation 39:79-87. https://doi.org/10.1016/j.jag.2015.02.012

Cheng M, He J, Wang H, Fan J, Xiang Y, Liu X, ... Zhang F (2022). Establishing critical nitrogen dilution curves based on leaf area index and aboveground biomass for greenhouse cherry tomato: A Bayesian analysis. European Journal of Agronomy 141:126615. https://doi.org/10.1016/j.eja.2022.126615

Colombo R, Bellingeri D, Fasolini D, Marino C M (2003). Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sensing of Environment 86(1):120-131. https://doi.org/10.1016/S0034-4257(03)00094-4

Fabbri C, Mancini M, dalla Marta A, Orlandini S, Napoli M (2020). Integrating satellite data with a nitrogen nutrition curve for precision top-dress fertilization of durum wheat. European Journal of Agronomy 120:126148. https://doi.org/10.1016/j.eja.2020.126148

FAOSTAT (2023). Food and Agriculture Organization Corporate Statistical Database. Retrieved 2023 June 12 from http://www.fao.org/faostat/

Feng M, Chen Y, Duan W, Zhu Z, Wang C, Hu Y (2023). Water-energy-carbon emissions nexus analysis of crop production in the Tarim river basin, Northwest China. Journal of Cleaner Production 396:136566. https://doi.org/10.1016/j.jclepro.2023.136566

Fu Y, Yang G, Li Z, Song X, Li Z, Xu X, ... Zhao C (2020). Winter wheat nitrogen status estimation using UAV-based RGB imagery and Gaussian processes regression. Remote Sensing 12(22):3778. https://doi.org/10.3390/rs12223778

Haider T, Farid MS, Mahmood R, Ilyas A, Khan MH, Haider STA, ... Gul M (2021). A computer-vision-based approach for nitrogen content estimation in plant leaves. Agriculture 11(8):766. https://doi.org/10.3390/agriculture11080766

Han L, Yang G, Dai H, Xu B, Yang H, Feng H, ... Yang X (2019). Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods 15(1):1-19. https://doi.org/10.1186/s13007-019-0394-z

Hao K, Fei L, Liu L, Jie F, Peng Y, Liu X, ... Wang X (2022). Comprehensive evaluation on the yield, quality, and water-nitrogen use efficiency of mountain apple under surge-root irrigation in the Loess Plateau based on the improved TOPSIS method. Frontiers in Plant Science 13:853546. https://doi.org/10.3389/fpls.2022.853546

Hou X, Xiang Y, Fan J, Zhang F, Hu W, Yan F, ... Li Z (2021). Evaluation of cotton N nutrition status based on critical N dilution curve, N uptake and residual under different drip fertigation regimes in Southern Xinjiang of China. Agricultural Water Management 256:107134. https://doi.org/10.1016/j.agwat.2021.107134

Hui Wang, Anders Krogh Mortensen, Peisheng Mao, Birte Boelt, René Gislum (2019). Estimating the nitrogen nutrition index in grass seed crops using a UAV-mounted multispectral camera. International Journal of Remote Sensing 40(7):2467-2482. https://doi.org/10.1080/01431161.2019.1569783

Jans Y, von Bloh W, Schaphoff S, Müller C (2021). Global cotton production under climate change–Implications for yield and water consumption. Hydrology and Earth System Sciences 25(4):2027-2044. https://doi.org/10.5194/hess-25-2027-2021

Jin J, Wang Q (2019). Evaluation of informative bands used in different PLS regressions for estimating leaf biochemical contents from hyperspectral reflectance. Remote Sensing 11(2):197. https://doi.org/10.3390/rs11020197

Jin Z, Li S, Yu F, Xu T (2024). Research on the rice fertiliser decision-making method based on UAV remote sensing data assimilation. Computers and Electronics in Agriculture 216:108508. https://doi.org/10.1016/j.compag.2023.108508

Justes E, Mary B, Meynard JM, Machet JM, Thelier-Huché L (1994). Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of botany 74(4):397-407. https://doi.org/10.1006/anbo.1994.1133

Kataoka T, Kaneko T, Okamoto H, Hata S (2003). Crop growth estimation system using machine vision. In Proceedings 2003 IEEE/ASME international conference on advanced intelligent mechatronics. Kobe, Japan. IEEE pp 1079-1083.

Lemaire G, Jeuffroy M H, Gastal F (2008). Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. European Journal of Agronomy 28(4):614-624. https://doi.org/10.1016/j.eja.2008.01.005

Li N, Li J, Tung S A, Shi X, Hao X, Shi F, ... Luo H (2022). Optimal irrigation amount can increase cotton lint yield by improving canopy structure and microenvironment under non-film deep drip irrigation. Journal of Cleaner Production 360:132156. https://doi.org/10.1016/j.jclepro.2022.132156

Li S, Yua F, Ata-UI-Karim S T, Zheng H, Cheng T, Liu X, ... Cao Q (2019). Combining color indices and textures of UAV-based digital imagery for rice LAI estimation. Remote Sensing 11(15):1763. https://doi.org/10.3390/rs11151763

Li Y, Chen D, Walker C N, Angus J F (2010). Estimating the nitrogen status of crops using a digital camera. Field Crops Research 118(3):221-227. https://doi.org/10.1016/j.fcr.2010.05.011

Liu H, Zhu H, Li Z, Yang G (2020). Quantitative analysis and hyperspectral remote sensing of the nitrogen nutrition index in winter wheat. International Journal of Remote Sensing 41(3):858-881. https://doi.org/10.1080/01431161.2019.1650984

Louhaichi M, Borman M M, Johnson D E (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International 16(1):65-70. https://doi.org/10.1080/10106040108542184

Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi F B (2020). Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing of Environment 237:111599. https://doi.org/10.1016/j.rse.2019.111599

Maresma Á, Ariza M, Martínez E, Lloveras J, Martínez-Casasnovas J A (2016). Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays L.) from a standard UAV service. Remote Sensing 8(12):973. https://doi.org/10.3390/rs8120973

Meyer G E, Neto J C (2008). Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture 63(2):282-293. https://doi.org/10.1016/j.compag.2008.03.009

Pei Shengzhao (2023). Water and nitrogen monitoring and diagnosis of cotton under membrane drip irrigation in Southern Xinjiang Based on UAV Remote Sensing. MSc Dissertation, North West Agriculture and Forestry University.

Pei SZ, Zeng HL, Dai YL, Bai WQ, Fan JL (2023). Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images. Journal of Integrative Agriculture 22(8):2536-2552. https://doi.org/10.1016/j.jia.2023.02.027

Possoch M, Bieker S, Hoffmeister D, Bolten A, Schellberg J, Bareth G (2016). Multi-temporal crop surface models combined with the RGB vegetation index from UAV-based images for forage monitoring in grassland. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 41:991-998. https://doi.org/10.5194/isprsarchives-XLI-B1-991-2016

Qi J, Chehbouni A, Huete A R, Kerr Y H, Sorooshian S (1994). A modified soil adjusted vegetation index. Remote sensing of environment 48(2):119-126. https://doi.org/10.1016/0034-4257(94)90134-1

Qiu Z, Ma F, Li Z, Xu X, Ge H, Du C (2021). Estimation of nitrogen nutrition index in rice from UAV RGB images coupled with machine learning algorithms. Computers and Electronics in Agriculture 189:106421. https://doi.org/10.1016/j.compag.2021.106421

Saberioon M M, Gholizadeh A (2016). Novel approach for estimating nitrogen content in paddy fields using low altitude remote sensing system. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 41:1011-1015. https://doi.org/10.5194/isprs-archives-XLI-B1-1011-2016

Scornet E (2016). Random forests and kernel methods. IEEE Transactions on Information Theory 62(3):1485-1500. https://doi.org/10.1109/TIT.2016.2514489.

Shi P, Wang Y, Xu J, Zhao Y, Yang B, Yuan Z, Sun Q (2021). Rice nitrogen nutrition estimation with RGB images and machine learning methods. Computers and Electronics in Agriculture 180:105860. https://doi.org/10.1016/j.compag.2020.105860

Soratto RP, Sandaña P, Fernandes FM, Fernandes AM, Makowski D, Ciampitti IA (2022). Establishing a critical nitrogen dilution curve for estimating nitrogen nutrition index of potato crop in tropical environments. Field Crops Research 286:108605. https://doi.org/10.1016/j.fcr.2022.108605

Stricker M A, Dimai A (1996). Color indexing with weak spatial constraints. In: Storage and Retrieval for Still Image and Video Databases IV. SPIE, 1996, 2670:29-40.

Sun-zhe YANG, Ai-zhen SUN (2023). Rice nitrogen nutrition diagnosis based on HSV color and LBP texture features. Computer and Modernization (07):86. https://doi.org/10.3969/j.issn.1006-2475.2023.07.015

Tian Y C, Gu K J, Chu X, Yao X, Cao W X, Zhu Y (2014). Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant and Soil 376:193-209. https://doi.org/10.1007/s11104-013-1937-0

Tsakmakis I D, Kokkos N P, Gikas G D, Pisinaras V, Hatzigiannakis E, Arampatzis G, Sylaios G K (2019). Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns. Agricultural Water Management 213:419-432. https://doi.org/10.1016/j.agwat.2018.10.029

Tucker C J (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment 8(2):127-150. https://doi.org/10.1016/0034-4257(79)90013-0

Verrelst J, Schaepman M E, Koetz B, Kneubühler M (2008). Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sensing of Environment 112(5):2341-2353. https://doi.org/10.1016/j.rse.2007.11.001

Wang Y, Wang D, Zhang G, Wang J (2013). Estimating nitrogen status of rice using the image segmentation of GR thresholding method. Field Crops Research 149:33-39. https://doi.org/10.1016/j.fcr.2013.04.007

Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE 38(1):259-269. https://doi.org/10.13031/2013.27838

Xu YF, Cheng Q, Wei XP, Yang B, Xia SS (2021). Monitoring of winter wheat growth under UAV using variation coefficient method and optimized neural network. Transactions of the Chinese Society of Agricultural Engineering 37(20):71-80. https://doi.org/10.11975/j.issn.1002-6819.2021.20.008

Yang B, Wang M, Sha Z, Wang B, Chen J, Yao X, ... Zhu Y (2019). Evaluation of aboveground nitrogen content of winter wheat using digital imagery of unmanned aerial vehicles. Sensors 19(20):4416. https://doi.org/10.3390/s19204416

Yang F, Dai H, Feng H, Yang G, Li Z, Chen Z (2016). Hyperspectral estimation of plant nitrogen content based on Akaike's information criterion. Transactions of the Chinese Society of Agricultural Engineering 32(23):161-167. https://doi.org/10.11975/j.issn.1002-6819.2016.23.022

Yang FQ, Feng HK, Xiao TH, Li TC, Guo XQ (2020). Nitrogen nutrition index estimation in winter wheat by UAV spectral information and texture feature fusion. Research of Agricultural Modernization 41(4):718-726. https://doi.org/10.13872/j.1000-0275.2020.0061

Zhang T, Wang MF, Zhao Q (2021). Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton. Crops 38(4):124-131. https://doi.org/10.16035/j.issn.1001-7283.2022.04.017

Zheng H, Li W, Jiang J, Liu Y, Cheng T, Tian Y, ... Yao X (2018). A comparative assessment of different modeling algorithms for estimating leaf nitrogen content in winter wheat using multispectral images from an unmanned aerial vehicle. Remote Sensing 10(12):2026. https://doi.org/10.3390/rs10122026

Zheng H, Ma J, Zhou M, Li D, Yao X, Cao W, ... Cheng T (2020). Enhancing the nitrogen signals of rice canopies across critical growth stages through the integration of textural and spectral information from unmanned aerial vehicle (UAV) multispectral imagery. Remote Sensing 12(6):957. https://doi.org/10.3390/rs12060957

Downloads

Published

2024-05-21

How to Cite

WANG, L., YAO, Q., ZHANG, Z., QIN, S., WANG, H., XU, F., YANG, M., LV, X., & MA, L. (2024). Diagnostic study of nitrogen nutrition in cotton based on unmanned aerial vehicle RGB images. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(2), 13728. https://doi.org/10.15835/nbha52213728

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52213728

Most read articles by the same author(s)

1 2 3 > >>