Grafting in Capsicum peppers as a strategy to mitigate the effects of climate change on yield and quality factors

Authors

  • Carlos MURCIA-ASENSI Universidad Católica de València San Vicente Mártir, Escuela de Doctorado, C/Guillem de Castro 65, CP 46008, Valencia (ES)
  • Ana FITA Universitat Politècnica de València, Instituto COMAV, Camino de Vera s/n 46022, Valencia (ES)
  • Ana de LUIS-MARGARIT Universidad Católica de Valencia San Vicente Mártir, Facultad de Veterinaria y Ciencias Experimentales, Departamento de Biotecnología, C/Guillem de Castro 94, 46001 Valencia (ES)
  • Carla GUIJARRO-REAL Universidad Politécnica de Madrid, ETSI Agronómica Alimentaria y de Biosistemas, Departamento de Biotecnología-Biología Vegetal, Av. Puerta de Hierro 2, 28040 Madrid (ES)
  • Maria D. RAIGÓN Universitat Politècnica de València, Instituto COMAV, Camino de Vera s/n 46022, Valencia (ES)
  • Vicente BLANCA-GIMÉNEZ Universitat Politècnica de València, Instituto COMAV, Camino de Vera s/n 46022, Valencia (ES)
  • Mónica DÍEZ-DIAZ Universidad Católica de Valencia San Vicente Mártir, Facultad de Veterinaria y Ciencias Experimentales, Departamento de Biotecnología, C/Guillem de Castro 94, 46001 Valencia (ES)
  • Adrián RODRÍGUEZ-BURRUEZO Universitat Politècnica de València, Instituto COMAV, Camino de Vera s/n 46022, Valencia (ES)

DOI:

https://doi.org/10.15835/nbha52113653

Keywords:

ascorbic acid, drought, fruit weight, genotypes, phenolics, rootstock, salinity

Abstract

Climate change in the Mediterranean areas is increasing problems on droughts, water availability and salinization of irrigation water. These are probably some of the most limiting factors on farming, especially in vegetables production. Capsicum peppers, one the most valuable vegetables in Spain, are quite sensitive to water deficit and particularly to salinity. The use of rootstocks tolerant to these abiotic stresses could be explored as a short/mid-term solution. In this work, we evaluated the ability as rootstocks of several accessions, together commercial F1 ‘Robusto’ and ‘Oscos’, with the cultivar ‘Herminio’ as scion, under control, drought (30% decrease irrigation) and salinity (5.8 dS m-1) in Campo de Cartagena area (Murcia, Spain). Yield and fruit weight, and water content, ascorbic acid content (AAC) and total phenolics (TP) at the unripe and fully ripe commercial stages were evaluated. Under control conditions, our rootstocks did not provide extra vigour and yield as none showed higher performance than the non-grafted ‘Herminio’ in yield (10 kg m-2) and fruit weight (215 g). However, drought and salinity conditions revealed that some accessions might be useful as rootstocks, providing higher yields and/or fruit size than ‘Herminio’, particularly yield under drought, i.e. 5-7 kg m-2 while ‘Herminio’ only achieved 4 kg m-2, and fruit weight in both stress conditions (i.e. 190-223 g vs 173 g under drought, 187-209 g vs 158 g under salinity). On average, drought increased the levels of antioxidants at both ripening stages, while salinity decreased them, specially AAC. Also, remarkable rootstock × treatment interactions, particularly in phenolics, enabled identifying several rootstocks providing high levels of antioxidants at both ripening stages and under both abiotic stresses, improving those from non-grafted ‘Herminio’.

References

Ahmed AF, Yu H, Yang X, Jiang W (2014). Deficit irrigation affects growth, yield, vitamin c content, and irrigation water use efficiency of hot pepper grown in soilless culture. HortScience 49:722-728. https://doi.org/10.21273/HORTSCI.49.6.722

Abdelgawad KF, El-Mogy MM, Mohamed MIA, Garchery C, Stevens RG (2019). Increasing ascorbic acid content and salinity tolerance of cherry tomato plants by suppressed expression of the ascorbate oxidase gene. Agronomy 9(2):51. https://doi.org/10.3390/agronomy9020051

Borrás D, Plazas M, Moglia A, Lanteri S (2021). The influence of acute water stresses on the biochemical composition of bell pepper

(Capsicum annuum L.) berries. Journal of the Science of Food and Agriculture 101:4724-4734. https://doi.org/10.1002/jsfa.11118

Cerruti E, Gisbert C, Drost HG, Valentino D, Portis E, Barchi L, ... Catoni M (2021). Grafting vigour is associated with DNA de-methylation in eggplant. Horticulture Research 8. https://doi.org/10.1038/s41438-021-00660-6

Chenoweth J, Hadjinicolaou P, Bruggeman A, Lelieveld J, Levin Z, Lange MA, Xoplaki E, Hadjikakou M (2011). Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: Modeled 21st century changes and implications. Water Resources Research 47(6):W06506 https://doi.org/10.1029/2010WR010269

Coban A, Akhoundnjad Y, Dere S, Dasgan HY (2020). Impact of salt-tolerant rootstock on the enhancement of sensitive tomato plant responses to salinity. HortScience 55:35-39. https://doi.org/10.21273/HORTSCI14476-19

Djidonou D, Zhao X, Simmone EH, Koch KE, Erickson JE (2013). Yield, water-, and nitrogen-use efficiency in field-grown, grafted tomatoes. HortScience 48:485-492. http://dx.doi.org/10.21273/HORTSCI.48.4.485

Djidonou D, Leskovar DI, Joshi M, Jifon J, Avila CA, Masabni J, Wallace RW, Crosby K (2020). Stability of yield and its components in grafted tomato tested across multiple environments in Texas. Scientific Reports 10:13535. https://doi.org/10.1038/s41598-020-70548-3

Egea I, Estrada Y, Faura C, Egea-Fernández JM, Bolarin MC, Flores FB (2023). Salt-tolerant alternative crops as sources of quality food to mitigate the negative impact of salinity on agricultural production. Frontiers in Plant Science 14:1092885. https://doi.org/10.3389/fpls.2023.1092885

FAO (2015). Climate change and food security: risks and responses. Food and Agriculture Organization of the United Nations, Rome, Italy, pp 122.

Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015). Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Frontiers in Plant Science 6:978. https://doi.org/10.3389/fpls.2015.00978

Gharibi S, Tabatabaei BES, Saeidi G, Goli SAH (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied Biochemistry and Biotechnology 178:796-809. https://doi.org/10.1007/s12010-015-1909-3

Gisbert-Mullor R, Pascual-Seva N, Martínez-Gimeno MA, López-Serrano L, Badal Marin E, Pérez-Pérez JG, ... López-Galarza S (2020). Grafting onto an appropriate rootstock reduces the impact on yield and quality of controlled deficit irrigated pepper crops. Agronomy 10(10):1529. https://doi.org/10.3390/agronomy10101529

Grieneisen ML, Aegerter BJ, Stoddard CS, Zhang M (2018). Yield and fruit quality of grafted tomatoes, and their potential for soil fumigant use reduction. A meta-analysis. Agronomy for Sustainable Development 38:29. https://doi.org/10.1007/s13593-018-0507-5

Hollick JR, Kubota C (2022). Effect of self- and inter-cultivar grafting on growth and nutrient content in sweet basil (Ocimum basilicum L.). Frontiers in Plant Science 13:921440. https://doi.org/10.3389/fpls.2022.921440

Jeppesen E, Beklioğlu M, Zadereev E (2023). The effects of global climate change on water level and salinity: causes and effects. Water 15:2853. https://doi.org/10.3390/w15152853

Kopta T, Sekara A, Pokluda R, Ferby V, Caruso G (2020). Screening of chilli pepper genotypes as a source of capsaicinoids and antioxidants under conditions of simulated drought stress. Plants 9(3):364. https://doi.org/10.3390/plants9030364

Kumar P, Rouphael Y, Cardarelli M, Colla G (2017). Vegetable grafting as a tool to improve drought resistance and water use efficiency. Frontiers in Plant Science 30(8):1130. https://doi.org/10.3389/fpls.2017.01130

Kyriacou MC, Rouphael Y, Colla G, Zrenner R, Schwarz D (2017). Vegetable grafting: the implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science 8:741. https://doi.org/10.3389/fpls.2017.00741

Laddomada B, Blanco A, Mita G, D’Amico L, Singh RP, Ammar K, Crossa J, Guzmán C (2021). Drought and heat stress impacts on phenolic acids accumulation in durum wheat cultivars. Foods 10(9):2142. https://doi.org/10.3390/foods10092142

Li H, Hou X, Bertin N, Ding R, Du T (2023). Quantitative responses of tomato yield, fruit quality and water use efficiency to soil salinity under different water regimes in Northwest China. Agricultural Water Management 277:108134. https://doi.org/10.1016/j.agwat.2022.108134

Linić I, Šamec D, Grúz J, Vujčić Bok V, Strnad M, Salopek-Sondi B (2019). Involvement of phenolic acids in short-term adaptation to salinity stress is species-specific among Brassicaceae. Plants 8(6):155. https://doi.org/10.3390/plants8060155

López-Marín J, Angosto JL, González Benavente-García A (2013). El cultivo de pimientos en el Campo de Cartagena, Comunidad Autónoma de Murcia, España. Grupo THM.

MAPA (2024). (Avance) Anuario de estadística 2023. Estadísticas agrarias (in Spanish). Ministerio de Agricultura Pesca y Alimentación, Madrid, Spain. Retrieved 2024 March 15 from: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/

Mahmood T, Rana RM, Ahmar S, Saeed S, Gulzar A, Khan MA, ... Du X (2021). Effect of drought stress on capsaicin and antioxidant contents in pepper genotypes at reproductive stage. Plants 10(7):1286. https://doi.org/10.3390/plants10071286

Morales-Soto A, García-Salas P, Rodríguez-Pérez C, Jiménez-Sánchez C, de la Luz Cádiz-Gurrea M, Segura-Carretero A, Fernández-Gutiérrez A (2014). Antioxidant capacity of 44 cultivars of fruits and vegetables grown in Andalusia (Spain). Food Research International 58:35-46. http://dx.doi.org/10.1016/j.foodres.2014.01.050

Ortega-Albero N, González-Orenga S, Vicente O, Rodríguez-Burruezo A, Fita A (2023). Responses to salt stress of the interspecific hybrid Solanum insanum × Solanum melongena and its parental species. Plants 12(2):295. https://doi.org/10.3390/plants12020295

Padilla YG, Gisbert-Mullor R, López-Serrano L, López-Galarza S, Calatayud Á (2021). Grafting enhances pepper water stress tolerance by improving photosynthesis and antioxidant defense systems. Antioxidants 10(4):576. https://doi.org/10.3390/antiox10040576

Pellegrini N, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F, Serafini M (2003). Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. The Journal of Nutrition 133(9):2812-2819. https://doi.org/10.1093/jn/133.9.2812

Pereira-Dias L, Vilanova S, Fita A, Prohens J, Rodríguez-Burruezo A (2019). Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Horticulture Research 6:54. https://doi.org/10.1038/s41438-019-0132-8

Perin EC, da Silva-Messias R, Borowski JM, Crizel RL, Schott IB, Carvalho IR, Rombaldi CV, Galli V (2019). ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chemistry 271:516-526. https://doi.org/10.1016/j.foodchem.2018.07.213

Razi K, Muneer S (2023). Grafting enhances drought tolerance by regulating and mobilizing proteome, transcriptome and molecular physiology in okra genotypes. Frontiers in Plant Science 14:1178935. https://doi.org/10.3389/fpls.2023.1178935

Ribes-Moya AM, Raigón MD, Moreno-Peris E, Fita A, Rodríguez-Burruezo A (2018). Response to organic cultivation of heirloom Capsicum peppers: Variation in the level of bioactive compounds and effect of ripening. PLoS One 13(11):e0207888. https://doi.org/10.1371/journal.pone.0207888

Ribes-Moya AM, Adalid AM, Raigón MD, Hellín P, Fita A, Rodríguez-Burruezo A (2020). Variation in flavonoids in a collection of peppers (Capsicum sp.) under organic and conventional cultivation: effect of the genotype, ripening stage, and growing system. Journal of the Science of Food and Agriculture 100:2208-2223. https://doi.org/10.1002/jsfa.10245

Rodríguez-Burruezo A, Prohens J, Raigón MD, Nuez F (2009). Variation for bioactive compounds in ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.) and implications for breeding. Euphytica 170:169-181. https://doi.org/10.1007/s10681-009-9916-5

Ropokis A, Ntatsi G, Kittas C, Katsoulas N, Savvas D (2019). Effects of temperature and grafting on yield, nutrient uptake, and water use efficiency of a hydroponic sweet pepper crop. Agronomy 9(2):110. https://doi.org/10.3390/agronomy9020110

Rouphael Y, Schwarz D, Krumbein A, Colla G (2010). Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae 127(2):172-179. https://doi.org/10.1016/j.scienta.2010.09.001

Sarker U, Oba S (2018). Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biology 18:258. https://doi.org/10.1186/s12870-018-1484-1

Semiz GD, Suarez, DL (2019). Impact of grafting, salinity and irrigation water composition on eggplant fruit yield and ion relations. Scientific Reports 9:19373. https://doi.org/10.1038/s41598-019-55841-0

Singh H, Kumar P, Kumar A, Kyriacou MC, Colla G, Rouphael Y (2020). Grafting tomato as a tool to improve salt tolerance. Agronomy 10(2):263. https://doi.org/10.3390/agronomy10020263

Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, Liu H, Trivedi P (2023). Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology 21(10):640-656. https://doi.org/10.1038/s41579-023-00900-7

Suarez DL, Celis N, Ferreira JFS, Reynolds T, Sandhu D (2021). Linking genetic determinants with salinity tolerance and ion relationships in eggplant, tomato and pepper. Scientific Reports 11:16298. https://doi.org/10.1038/s41598-021-95506-5

Syngenta Vegetables Seeds Global (2024). Herminio F1. Retrieved 2024 March 15 from: https://www.syngentavegetables.com/es-es/product/seed/pimiento/Herminio

Taha SS, Abdel-Wahab A, Hosny S (2022). Grafting as a tool for improved water use efficiency, physio-biochemical attributes of cucumber plants under deficit irrigation. Journal of Applied Horticulture 24:53-59. https://doi.org/10.37855/jah.2022.v24i01.10

Toppino, L, Prohens J, Rotino GL, Plazas M, Parisi M, Carrizo-García C, Tripodi P (2021). Pepper and Eggplant Genetic Resources. In: Carputo D, Aversano R, Ercolano MR (Eds). The Wild Solanums Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-30343-3_6

Trenberth KE (2011). Changes in precipitation with climate change. Climate Research 47:123-138. https://doi.org/10.3354/cr00953

Ullah A, Bano A, Khan N (2021). Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Frontiers in Sustainable Food Systems 5:618092. https://doi.org/10.3389/fsufs.2021.618092

Van de Wal BAE, Van Meulebroek L, Steppe K (2017). Application of drought and salt stress can improve tomato fruit quality without jeopardising production. Acta Horticulturae 1170:729-736. https://doi.org/10.17660/ActaHortic.2017.1170.92

Winsemius HC, Jongman B, Veldkamp TI, Hallegatte S, Bangalore M, Ward PJ (2018). Disaster risk, climate change, and poverty: assessing the global exposure of poor people to floods and droughts. Environment and Development Economics 23(3):328-348. https://doi.org/10.1017/S1355770X17000444

World Economic Forum (2023). How to mitigate the effects of climate change on global food security. Retrieved 2024 March 15 from: https://www.weforum.org/agenda/2023/04/mitigate-climate-change-food-security/

Downloads

Published

2024-03-27

How to Cite

MURCIA-ASENSI, C., FITA, A., de LUIS-MARGARIT, A., GUIJARRO-REAL, C., RAIGÓN, M. D., BLANCA-GIMÉNEZ, V., DÍEZ-DIAZ, M., & RODRÍGUEZ-BURRUEZO, A. (2024). Grafting in Capsicum peppers as a strategy to mitigate the effects of climate change on yield and quality factors. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), 13653. https://doi.org/10.15835/nbha52113653

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52113653

Most read articles by the same author(s)