Serra da Canastra National Park: Influence of forest fires on the RUSLE C factor and its impact on water erosion

Authors

  • Guilherme S. RIOS Federal University of Alfenas (UNIFAL-MG), Graduate Program in Environmental Sciences, R. Gabriel Monteiro da Silva, 700, Alfenas, Minas Gerais (BR) https://orcid.org/0000-0003-2141-7617
  • Derielsen B. SANTANA Federal University of Alfenas (UNIFAL-MG), Graduate Program in Environmental Sciences, R. Gabriel Monteiro da Silva, 700, Alfenas, Minas Gerais (BR) https://orcid.org/0000-0003-2484-9984
  • Guilherme H.E. LENSE Federal University of Alfenas (UNIFAL-MG), Graduate Program in Environmental Sciences, R. Gabriel Monteiro da Silva, 700, Alfenas, Minas Gerais (BR) https://orcid.org/0000-0002-3560-9241
  • Felipe G. RUBIRA Federal University of Alfenas (UNIFAL-MG), Institute of Natural Sciences, R. Gabriel Monteiro da Silva, 700, Alfenas, Minas Gerais (BR) https://orcid.org/0000-0002-6594-8228
  • Joaquim E.B. AYER University Center of Paulínia (UNIFACP), Department of Chemistry, R. Madre Maria Vilac, 121, Paulínia, São Paulo (BR) https://orcid.org/0000-0003-0612-0663
  • Ronaldo L. MINCATO Federal University of Alfenas (UNIFAL-MG), Institute of Natural Sciences, R. Gabriel Monteiro da Silva, 700, Alfenas, Minas Gerais (BR) https://orcid.org/0000-0001-8127-0325

DOI:

https://doi.org/10.15835/nbha52113577

Keywords:

Cerrado, conservation units, MapBiomas, remote sensing, vegetation index

Abstract

The adverse impacts of soil degradation and nutrient loss resulting from water erosion are significant environmental concerns that have profound implications for both water quality and biodiversity. This study aims to evaluate the impact of forest fires on soil loss through water erosion in the Serra da Canastra National Park, in Minas Gerais state, Brazil. Using the Revised Universal Soil Loss Equation (RUSLE), which considers rainfall erosivity, soil erodibility, slope length and slope and vegetation cover, the C factor (vegetation cover) values were obtained from data from literature and methods based on the Normalized Differential Vegetation Index (NDVI). Validation was carried out using data on total sediment, water flow and daily runoff from the hydrosedimentological station and the InVEST software. The results highlight the significant impact of wildfires on soil loss through water erosion and indicate that areas recently affected by wildfires, especially on steep slopes and with more erodible soils, are subject to the highest rates of soil loss. Soil loss rates varied from 0.75 to 12.55 Mg ha-1 yr-1, in part due to the different ways of obtaining factor C. The research emphasizes the need to conserve vegetation cover to prevent soil erosion, particularly in regions impacted by forest fires. This study offers valuable insights that can contribute to enhancing the sustainable environmental management of the Serra da Canastra National Park.

References

Agbeshie AA, Abugre S, Atta-Darkwa T, Awuah R (2022). A review of the effects of forest fire on soil properties. Journal of Forestry Research 33(5):1419-1441. https://doi.org/10.1007/s11676-022-01475-4

Almagro A, Thomé TC, Colman CB, Pereira RB, Marcato Junior J, Rodrigues DBB (2019). Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions. International Soil and Water Conservation Research 7(4):325-334. https://doi.org/10.1016/j.iswcr.2019.08.005

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JDM, Sparovek G (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22(6):711-728. https://doi.org/10.1127/0941-2948/2013/0507

ANA - Agência Nacional de Águas e Saneamento Básico (2023). Retrieved 2023 August 12 from: https://www.snirh.gov.br/hidroweb/mapa

Andrade NS, Martins Filho MV, Torres JL, Pereira GT, Marques Júnior J (2011). Impacto técnico e econômico das perdas de solo e nutrientes por erosão no cultivo da cana-de-açúcar [Technical and economic impact of soil and nutrient losses due to erosion in sugarcane cultivation.]. Engenharia Agrícola 31:539-550. https://doi.org/10.1590/S0100-69162011000300014

Avanzi JC, Silva, MLN, Curi N, Norton, LD, Beskow S, Martins SG (2013). Spatial distribution of water erosion risk in a watershed with eucalyptus and Atlantic Forest. Ciência e Agrotecnologia 37(5):427-434. https://doi.org/10.1590/S1413-70542013000500006

Ayer JEB, Olivetti D, Mincato RL, Silva MLN (2015). Erosão hídrica em Latossolos Vermelhos distróficos. [Water erosion in dystrophic Red Latosols] Pesquisa Agropecuária Tropical 45:180-191. https://doi.org/10.1590/1983-40632015v4531197

Barbosa BDS, Ferraz GAS, Gonçalves LM, Marin DB, Maciel DT, Ferraz PFP, Rossi G (2019). RGB vegetation indices applied to grass monitoring: a qualitative analysis. Agronomy Research 17(2):349-357. https://doi.org/10.15159/ar.19.119

Batista PVG, Silva MLN, Silva BPC, Curi N, Bueno IT, Acerbi Júnior FW, ... Quinton J (2017). Modelling spatially distributed soil losses and sediment yield in the upper Grande River Basin-Brazil. Catena 157:139-150. https://doi.org/10.1016/j.catena.2017.05.025

Bertol I, Cassol EA, Merten GH (2019). Manejo e conservação do solo e da água [Soil and water management and conservation] (1th ed), Viçosa-MG.

Bertol I, Schick J, Batistela O (2001). Razão de perdas de solo e fator C para as culturas de soja e trigo em três sistemas de preparo em um Cambissolo Húmico alumínico [Soil loss ratio and C factor for soybean and wheat crops in three tillage systems in an aluminum humic Cambisol]. Revista Brasileira de Ciência do Solo 25:451-461. https://doi.org/10.1590/S0100-06832001000200021

Bertoni J, Lombardi Neto F (2012). Conservação do solo [Soil conservation] (10th ed), Piracicaba-SP.

Beskow S, Mello CR, Norton LD, Curi N, Viola MR, Avanzi JC (2009). Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena 79(1):49-59. https://doi.org/10.1016/j.catena.2009.05.010

Borrelli P, Robinson DA, Panagos P, Lugato E, Yang JE, Alewell C, ... Ballabio, C (2020). Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences 117(36):21994-22001. https://doi.org/10.1073/pnas.2001403117

Bouguerra S, Jebari S (2017). Identification and prioritization of sub-watersheds for land and water management using InVEST SDR model: Rmelriver basin, Tunisia. Arabian Journal of Geosciences 10:1-9. https://doi.org/10.1007/s12517-017-3104-z

Brasil (1972). Decreto n° 70.355, de 3 de abril de 1972. Cria o Parque Nacional da Serra da Canastra, no Estado de Minas Gerais, com os limites que especifica, e dá outras providências [Creation of the Serra da Canastra National Park, in the State of Minas Gerais, with the limits it specifies, and provides other measures]. Retrieved 2023 March 11 from: https://www.planalto.gov.br/ccivil_03/decreto/1970-1979/D70355.htm

Brasil (2000). Sistema Nacional de Unidades de Conservação da Natureza: Lei n.º 9.985, de 18 de julho de 2000 [National System of Nature Conservation Units: Law No. 9,985, of July 18, 2000]. Retrieved 2023 March 11 from: https://www.planalto.gov.br/ccivil_03/leis/l9985.htm

Brasil (2005). Ministério do Meio Ambiente. Instituto Brasileiro Meio Ambiente e Recursos Naturais Renováveis. Plano de manejo do Parque Nacional da Serra da Canastra [Brazilian Institute for the Environment and Renewable Natural Resources. Serra da Canastra National Park management plan] Retrieved 2023 March 11 from: http://www.icmbio.gov.br/portal/images/stories/imgs-unidades-coservacao/pm_parna_serra_canastra_1.pdf

Cabral JBP, Becegato VA, Scopel I, Lopes RM (2005). Uso de técnicas de geoprocessamento para mapear o potencial natural de erosão da chuva na bacia hidrográfica do reservatório de Cachoeira Dourada GO/MG [Use of geoprocessing techniques to map the natural potential for rain erosion in the watershed of the Cachoeira Dourada GO/MG]. Raega-O Espaço Geográfico em Análise 10:107-116. http://dx.doi.org/10.5380/raega.v10i0.4982

Cardoso P H, Menini Neto L, Salimena FRG (2019). Stachytarpheta grandiflora, a new species of Verbenaceae from the Parque Nacional da Serra da Canastra, Minas Gerais, Brazil. Phytotaxa 413(1):61-66. https://doi.org/10.11646/phytotaxa.413.1.7

Castro RM, Alves WS, Oliveira Marcionilio SML, Moura DMB, Oliveira, DMS (2022). Soil losses related to land use and rainfall seasonality in a watershed in the Brazilian Cerrado. Journal of South American Earth Sciences 119:104020. https://doi.org/10.1016/j.jsames.2022.104020

Castro SS, Hernani LC (2015). Solos frágeis: caracterização, manejo e sustentabilidade. Embrapa Solos-Livro técnico (INFOTECA-E) [Fragile soils: characterization, management and sustainability. Embrapa Soils-Technical book (INFOTECA-E)]. Retrieved 2023 March 17 from: https://www.infoteca.cnptia.embrapa.br/handle/doc/1039217

Costa L, Nunes L, Ampatzidis Y (2020). A new visible band index (vNDVI) for estimating NDVI values on RGB images utilizing genetic algorithms. Computers and Electronics in Agriculture 172:105334. https://doi.org/10.1016/j.compag.2020.105334

Coutinho LM (2006). The biome concept. Acta Botanica Brasilica 20:13-23. https://doi.org/10.1590/S0102-33062006000100002

Cunha ER, Bacani VM,Panachuki E (2017). Modeling soil erosion using RUSLE and GIS in a watershed occupied by rural settlement in the Brazilian Cerrado. Natural Hazards 85(2):851-868. https://doi.org/10.1007/s11069-016-2607-3

Dechen SCF, Telles TS, Guimarães MDF, Maria ICD (2015). Perdas e custos associados à erosão hídrica em função de taxas de cobertura do solo [Losses and costs associated with water erosion depending on soil cover rates]. Bragantia 74:224-233. https://doi.org/10.1590/1678-4499.0363

Depountis N, Michalopoulou M, Kavoura K, Nikolakopoulos K, Sabatakakis N (2020). Estimate changes in soil erosion rate in areas affected by wildfires. ISPRS International Journal of Geo-Information 9(10):562-580. https://doi.org/10.3390/ijgi9100562

Durigan G, Ratter JA (2016). The need for a consistent fire policy for Cerrado conservation. Journal of Applied Ecology 53(1):11-15. https://doi.org/10.1111/1365-2664.12559

Durigon VL, Carvalho DF, Antunes MAH, Oliveira PTS, Fernandes MM (2014). NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International Journal of Remote Sensing 35(2):441-453. https://doi.org/10.1080/01431161.2013.871081

Efthimiou N, Psomiadis E, Panagos P (2020). Fire severity and soil erosion susceptibility mapping using multi-temporal Earth Observation data: The case of Mati fatal wildfire in Eastern Attica, Greece. Catena 187:104320. https://doi.org/10.1016/j.catena.2019.104320

Esri (2021). ArcGIS Desktop: Release 10.8.2 [Software].

Farinasso M, Carvalho Júnior OA, Guimarães RF, Gomes RAT, Ramos VM (2006). Avaliação Qualitativa do Potencial de Erosão Laminar em Grandes Áreas por Meio da EUPS Equação Universal de Perdas de Solos Utilizando Novas Metodologias em SIG para os Cálculos dos seus Fatores na Região do Alto Parnaíba PI-MA [Qualitative Assessment of Laminar Erosion Potential in Large Areas Using EUPS Universal Soil Loss Equation Using New GIS Methodologies to Calculate Factors in the Alto Parnaíba PI-MA Region]. Revista Brasileira De Geomorfologia 7(2):75-85. https://doi.org/10.20502/rbg.v7i2.80

Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Alsdorf D (2007). The shuttle radar topography mission. Reviews of Geophysics 45(2):1-33. https://doi.org/10.1029/2005RG000183

Félix FC, Cândido BM, Moraes JFL (2023). How suitable are vegetation indices for estimating the (R) USLE C-factor for croplands? A case study from Southeast Brazil. ISPRS Open Journal of Photogrammetry and Remote Sensing 10:100050. https://doi.org/10.1016/j.ophoto.2023.100050

Friedlingstein P (2015). Carbon cycle feedbacks and future climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373(2054):20140421. https://doi.org/10.1098/rsta.2014.0421

Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Michaelsen J (2015). The climate hazards infrared precipitation with stations – a new environmental record for monitoring extremes. Scientific Data 2(1):1-21. https://doi.org/10.1038/sdata.2015.66

Gil HAP, Pacheco AJM (2020). RGB Spectral indices for the analysis of soil protection by vegetation cover against erosive processes. In: Soil Erosion-Current Challenges and Future Perspectives in a Changing World. IntechOpen. London pp 3-14.

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202:18-27. https://doi.org/10.1016/j.rse.2017.06.031

Gwapedza D, Hughes DA, Slaughter AR Mantel SK (2021). Temporal Influences of Vegetation Cover (C) Dynamism on MUSLE Sediment Yield Estimates: NDVI Evaluation. Water 13(19):2707. https://doi.org/10.3390/w13192707

Hamel P, Chaplin-Kramer R, Sim S Mueller C (2015). A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Science of the Total Environment 524:166-177. https://doi.org/10.1016/j.scitotenv.2015.04.027

Hasui Y (2010). A grande colisão pré-cambriana do sudeste brasileiro e a estruturação regional [The great Precambrian collision in southeastern Brazil and regional structuring]. Geociências 29(2):141-169.

Hysa A, Spalevic V, Dudic B, Roșca S, Kuriqi A, Bilașco Ș, Sestras P (2021). Utilizing the available open-source remotely sensed data in assessing the wildfire ignition and spread capacities of vegetated surfaces in Romania. Remote Sensing 13(14):2737. https://doi.org/10.3390/rs13142737

IBGE - Instituto Brasileiro de Geografia e Estatística (2022). Coordenação de Estruturas Territoriais. Malha municipal digital e áreas territoriais [Coordination of Territorial Structures. Digital municipal network and territorial areas]. Retrieved 2023 August 16 from: https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html

IUSS - International Union of Soil Sciences (2014). World reference base for soil resources 2014. In: Schad P, van Huyssteen C, Micheli E (Eds). World Soil Resources Reports. No. 106. Food and Agriculture Organization of the United Nations FAO, Rome 106:1-203 Retrieved 2023 August 16 from: https://www.fao.org/3/i3794en/I3794en.pdf

Klink CA, Machado RB (2005). A conservação do Cerrado brasileiro [The conservation of the Brazilian Cerrado]. Megadiversidade 1(1):147-155.

Lal R (2020). Soil erosion and gaseous emissions. Applied Sciences 10(8):2784. https://doi.org/10.3390/app10082784

Lanorte A, Cillis G, Calamita G, Nolè G, Pilogallo A, Tucci B, De Santis F (2019). Integrated approach of RUSLE, GIS and ESA Sentinel-2 satellite data for post-fire soil erosion assessment in Basilicata region (Southern Italy). Geomatics, Natural Hazards and Risk 10(1):1563-1595. https://doi.org/10.1080/19475705.2019.1578271

Lense GHE, Parreiras TC, Spalevic V, Avanz, JC, Mincato RL (2021). Soil losses in the State of Rondônia, Brazil. Ciência Rural 51(5):6. https://doi.org/10.1590/0103-8478cr20200460

Liu B, Xie Y, Li Z, Liang Y, Zhang W, Fu S, Guo Q (2020). The assessment of soil loss by water erosion in China. International Soil and Water Conservation Research 8(4):430-439. https://doi.org/10.1016/j.iswcr.2020.07.002

Macedo PMS, Oliveira PTS, Antunes MAH, Durigon VL, Fidalgo ECC, Carvalho DF (2021). New approach for obtaining the C-factor of RUSLE considering the seasonal effect of rainfalls on vegetation cover. International Soil and Water Conservation Research 9(2):207-216. https://doi.org/10.1016/j.iswcr.2020.12.001

Macêdo RJA, Santos JC, Surya L (2021). Modelagem da erosão hídrica potencial no Parque Nacional Serra da Capivara, Nordeste do Brasil [Modeling potential water erosion in Serra da Capivara National Park, Northeast Brazil]. Revista Brasileira de Geomorfologia 22(4):793-808. https://doi.org/10.20502/rbg.v22i4.1942

Mannigel AR, Passos M, Moreti D, Medeiros LR (2002). Fator erodibilidade e tolerância de perda dos solos do Estado de São Paulo [Erodibility factor and loss tolerance of soils in the State of São Paulo]. Acta Scientiarum Agronomy 24:1335-1340. https://doi.org/10.4025/actasciagron.v24i0.2374

Mapbiomas (2022). Projeto Mapbiomas. Mapeamento das áreas queimadas no Brasil (Coleção 1) [Mapping of burned areas in Brazil (Collection 1)]. Retrieved 2023 July 11 from: https://plataforma.mapbiomas.org

Mapbiomas (2023). Projeto Mapbiomas. Coleção [7] da Série Anual de Mapas de Uso e Cobertura da Terra do Brasil [Collection [7] of the Annual Series of Land Use and Cover Maps of Brazil]. Retrieved 2023 July 11 from: https://plataforma.mapbiomas.org

Martins SG, Silva MLN, Avanzi JC, Curi N, Fonseca S (2010). Fator cobertura e manejo do solo e perdas de solo e água em cultivo de eucalipto e em Mata Atlântica nos Tabuleiros Costeiros do Estado do Espírito Santo [Soil coverage and management factor and soil and water losses in eucalyptus cultivation and in the Atlantic Forest in the Coastal Tablelands of the state of Espírito Santo]. Scientia Forestalis 38(87):517-526.

Matomela N, Li T, Ikhumhen HO, Lopes RND, Meng L (2022). Soil erosion spatio-temporal exploration and Geodetection of driving factors using InVEST-sediment delivery ratio and Geodetector models in Dongsheng, China. Geocarto International 37(26):13039-13056. https://doi.org/10.1080/10106049.2022.2076912

Mello CD, Viola MR, Beskow S, Norton LD (2013). Multivariate models for annual rainfall erosivity in Brazil. Geoderma 202:88-102. https://doi.org/10.1016/j.geoderma.2013.03.009

Messias CG, Ferreira MC (2017). Aplicação do método de classificação contínua fuzzy para o mapeamento da fragilidade do terreno em relação à ocorrência de ravinas no Parque Nacional da Serra da Canastra [Application of continuous fuzzy classification method for mapping terrain fragility regarding the occurrence of gullies in the Serra da Canastra National Park]. RAEGA-O Espaço Geográfico em Análise, 39:111-127. https://doi.org/10.5380/raega.v39i0.42914

Messias CG, Ferreira MC (2019a). Análise da distribuição espacial das queimadas no Parque Nacional da Serra da Canastra (MG), entre 1984 e 2017 [Analysis of the spatial distribution of fires in the Serra da Canastra National Park (MG), between 1984 and 2017]. Uberlândia-MG: Caminhos de Geografia 2071:52-71. https://doi.org/10.14393/RCG207144609

Messias CG, Ferreira MC (2019b). Modelo Geoespacial para a Identificação de Áreas com Perigo de Propagação de Queimadas no Parque Nacional da Serra da Canastra [Geospatial Model for Identification of Areas with Danger of Spread of Fires in the Serra da Canastra National Park]. Revista do Departamento De Geografia 38:154-168. https://doi.org/10.11606/rdg.v38i1.153493

Moore ID, Burch GJ (1986). Physical basis of the length‐slope factor in the universal soil loss equation. Soil Science Society of America Journal 50(5):1294-1298. https://doi.org/10.2136/sssaj1986.03615995005000050042x

Morais RCS, Sales MCL (2017). Estimativa do potencial natural de erosão dos solos da bacia hidrográfica do Alto Gurguéia, Piauí-Brasil, com uso de Sistema de Informação Geográfica [Estimation of the natural potential for soil erosion in the Alto Gurguéia river basin, Piauí-Brazil, using a Geographic Information System]. Caderno de Geografia 27(1):84-105. https://doi.org/10.5752/p.2318-2962.2017v27nesp1p84

Nachtigall SD, Nunes MCM, Moura-Bueno JM, Lima CLRD, Miguel P, Beskow S, Silva TP (2020). Spatial modeling of soil water erosion associated with agroclimatic seasonality in the southern region of Rio Grande do Sul, Brazil. Engenharia Sanitaria e Ambiental 25:933-946. https://doi.org/10.1590/S1413-4152202020190136

Nanzad L, Zhang J, Tuvdendorj B, Nabil M, Zhang S, Bai Y (2019). NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. Journal of Arid Environments 164:69-77. https://doi.org/10.1016/j.jaridenv.2019.01.019

Novaes GT, Brito JLS, Fábio OS (2018). Unidades climáticas do Triângulo Mineiro/Alto Paranaíba. Revista Brasileira de Climatologia [Climatic units of the Triângulo Mineiro/Alto Paranaíba. Brazilian Journal of Climatology] 23:223-243. https://doi.org/10.5380/abclima.v23i0.58520

Panagos P, Borrelli P, Meusburger K, Alewell C, Lugato E, Montanarella L (2015). Estimating the soil erosion covermanagement factor at the European scale. Land Use Policy 48:38-50. https://10.1016/j.landusepol.2015.05.021

Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution 20(9):503-510. https://doi.org/10.1016/j.tree.2005.05.011

Polidoro JC, Freitas PL, Hernani LC, Anjos LHCD, Rodrigues RDAR, Cesário FV, Ribeiro JL (2021). Potential impact of plans and policies based on the principles of conservation agriculture on the control of soil erosion in Brazil. Land Degradation & Development 32(12):3457-3468. https://doi.org/10.1002/ldr.3876

Qian K, Ma X, Wang Y, Yuan X, Yan W, Liu Y, Yang X, … Li J (2022). Effects of vegetation change on soil erosion by water in major basins, Central Asia. Remote Sensing 14(21):5507. https://doi.org/10.3390/rs14215507

Renard KG, Foster GR, Weesier GA, Mccool DK, Yoder DC (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture, Agricultural Research Service.

Riquetti NB, Mello CR, Leandro D, Guzman JA, Beskow S (2022). Assessment of the soil-erosion-sediment for sustainable development of South America. Journal of Environmental Management 321:1-15. https://doi.org/10.1016/j.jenvman.2022.115933

Rodrigues WF, Costa IG (2021). Danos ambientais provocados por incêndios no Cerrado: uma análise entre os anos de 2004 e 2019 no Parque Nacional da Serra da Canastra-MG [Environmental damage caused by fires in the Cerrado: an analysis between 2004 and 2019 in the Serra da Canastra National Park-MG]. Ensaios de Geografia 7(14):163-188. https://doi.org/10.22409/eg.v7i14.48500

Roose EJ (1977). Application of the Universal Soil Loss Equation of Wischmeier and Smith in West Africa. In: Greenland DJ, Lal R (Eds). Soil conservation and management in the humid tropics Chichester: John Wiley & Sons pp 177-187.

Rouse JW, Haas RH, Schell JA, Deering DW (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ 351(1):309-329.

Salgado AAR, Santos LJC, Paisani JC (2019). The physical geography of Brazil: Environment, vegetation and landscape. Springer Nature Switzerland: Springer Publisher 1:93-117 https://doi.org/10.1007/978-3-030-04333-9

Sano EE, Bettiol GM, Martins EDS, Couto Júnior AF, Vasconcelos V, Bolfe EL, Victoria DDC (2020). Características gerais da paisagem do Cerrado. In: Dinâmica agrícola no cerrado: análises e projeções [General characteristics of the Cerrado landscape. In: Agricultural dynamics in the cerrado: analyzes and projections]. Embrapa Cerrados, Brasília pp 21-37.

Santana DB, Bolleli TM, Lense GHE, Silva LFPM, Sestras P, Spalevic V, Mincato RL (2021). Estimate of water erosion in coffee growing areas in Serra da Mantiqueira, Minas Gerais State, Brazil. Agriculture and Forestry 67(2):75-88. https://10.17707/AgricultForest.67.2.06

Senanayake S, Pradhan B, Alamri A, Park HJ (2022). A new application of deep neural network (LSTM) and RUSLE models in soil erosion prediction. Science of the Total Environment 845:157220. https://doi.org/10.1016/j.scitotenv.2022.157220

Sestras P, Mircea S, Cîmpeanu SM, Teodorescu R, Roșca S, Bilașco Ș, … Spalevic V (2023). Soil erosion assessment using the intensity of erosion and outflow model by estimating sediment yield: Case Study in river basins with different characteristics from Cluj County, Romania. Applied Sciences 13(16):9481. https://doi.org/10.3390/app13169481

Seutloali KE, Beckedahl HR (2015). A review of road-related soil erosion: an assessment of causes, evaluation techniques and available control measures. Earth Sciences Research Journal 19(1):73-80. https://10.15446/esrj.v19n1.43841

Shakesby RA (2011). Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews 105(3/4)71-100. https://doi.org/10.1016/j.earscirev.2011.01.001

Sharp R, Chaplin-Kramer R, Wood S, Guerry A, Tallis H, Ricketts T, … Douglass J (2018). InVEST 3.5.0 User’s Guide. California: The Natural Capital Project. Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. https://doi.org/10.13140/RG.2.2.32693.78567

Silva AL, Souza C, E’loy L, Passos CJS (2019). Selective environmental policies and expansion of the agricultural frontier in the Cerrado: impacts on local communities in a Conservation Unit in western Bahia. Revista Nera (47):321–347. https://doi.org/10.47946/rnera.v0i47.6274

Silva AMD, Silva MLN, Curi N, Avanzi JC, Ferreira MM (2009). Erosividade da chuva e erodibilidade de Cambissolo e Latossolo na região de Lavras, sul de Minas Gerais [Rain erosivity and erodibility of Cambisol and Oxisol in the Lavras region, south of Minas Gerais]. Revista Brasileira de Ciência do Solo 33(6):1811-1820. https://doi.org/10.1590/S0100-06832009000600029

Silva FGB, Minotti RT, Lombardi Neto F, Primavesi, O, Crestana S. (2010). Previsão da perda de solo na Fazenda Canchim-SP (EMBRAPA) utilizando geoprocessamento e o USLE 2D [Prediction of soil loss at Fazenda Canchim-SP (EMBRAPA) using geoprocessing and USLE 2D]. Engenharia Sanitária e Ambiental 15:141-148. https://doi.org/10.1590/S1413-41 52201000020000

Silva MA, Pinto CP, Pinheiro MAP, Marinho MS, Lombello JC, Pinho JMMP, Goulart LEA, Magalhães JR (2020). Mapa geológico do estado de Minas Gerais. Belo Horizonte: Companhia de Pesquisa de Recursos Minerais CPRM. 1 mapa, color. Escala 1:1.000.000 [Geological map of the state of Minas Gerais. Belo Horizonte: Mineral Resources Research Company CPRM. 1 map, color. Scale 1:1,000,000.] Retrieved 2023 August 14 from: https://rigeo.sgb.gov.br/handle/doc/21828

Souza CMP, Veloso GV, Mello CRD, Ribeiro RP, Silva LAP, Leite ME, Fernandes Filho EI (2022). Spatiotemporal prediction of rainfall erosivity by machine learning in southeastern Brazil. Geocarto International 37(26):11652-11670. https://doi.org/10.1080/10106049.2022.2060318

UFV Universidade Federal de Viçosa, Fundação Centro Tecnológico de Minas Gerais CETEC, Universidade Federal de Lavras UFLA, Fundação Estadual do Meio Ambiente FEAM (2010). Mapa de solos do Estado de Minas Gerais Escala 1:650.000 [Soil map of the State of Minas Gerais Scale 1:650,000]. Retrieved 2023 August 14 from: http://www.feam.br/noticias/1/949-mapas-de-solo-do-estado-de-minas-gerais

USGS United States Geological Survey (2019). Landsat 8 Surface Reflectance 30 meter (Version 1.5.0). USGS Earth Resources Observation and Science (EROS) Center. Retrieved 2023 February 16 from: https://earthexplorer.usgs.gov

Valkanou K, Karymbalis E, Bathrellos G, Skilodimou H, Tsanakas K, Papanastassiou D, Gaki-Papanastassiou K (2022). Soil loss potential assessment for natural and post-fire conditions in Evia Island, Greece. Geosciences 12(10):367. https://doi.org/10.3390/geosciences12100367

Vasconcelos V, Carvalho Junior OA, Martins ES, Couto Junior AF, Guimarães RF, Gomes RAT (2012). Sistema de classificação geomorfométrica baseado em uma arquitetura sequencial em duas etapas: árvore de decisão e classificador espectral, no Parque Nacional da Serra da Canastra [Geomorphometric classification system based on a two-step sequential architecture: decision tree and spectral classifier, in the Serra da Canastra National Park]. Revista Brasileira De Geomorfologia 13(2):171-186 https://doi.org/10.20502/rbg.v13i2.248

Vigiak O, Borselli L, Newham L, McInnes J, Roberts A (2012). Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 138(1):74-88. https://doi.org/10.1016/j.geomorph.2011.08.026

Wischmeier WH, Smith DD (1978). Predicting rainfall erosion losses: a guide to conservation planning. The USDA Agricultural Handbook (537th ed), Maryland.

Zanter K (2019). Landsat 8-9, Collection 2 (C2), Level 2 Science Product (L2SP) Guide. Surface Reflectance Code (LASRC - Version 5.0) Product Guide. USGS: Sioux Falls, SD, USA. Retrieved 2023 February 16 from: https://www.usgs.gov/media/files/landsat-8-9-collection-2-level-2-science-product-guide

Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC (2016). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment 84(3):471-475. https://doi.org/10.1016/S0034-4257(02)00135-9

Zhang X, Song J, Wang Y, Sun H, Li Q (2022). Threshold effects of vegetation coverage on runoff and soil loss in the Loess Plateau of China: A meta-analysis. Geoderma 412:115720. https://doi.org/10.1016/j.geoderma.2022.115720

Zhu, Z, Woodcock CE (2014). Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sensing of Environment 152:217-234. https://doi.org/10.1016/j.rse.2014.06.012

Downloads

Published

2024-03-30

How to Cite

RIOS, G. S., SANTANA, D. B., LENSE, G. H., RUBIRA, F. G., AYER, J. E., & MINCATO, R. L. (2024). Serra da Canastra National Park: Influence of forest fires on the RUSLE C factor and its impact on water erosion. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), 13577. https://doi.org/10.15835/nbha52113577

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52113577