Coat protein of alfalfa mosaic alfamovirus (AMV) from Türkiye: genetic inference and in silico docking analysis for potential antiphytoviral purposes

Authors

  • Serap DEMİREL University of Van Yuzuncu Yil, Faculty of Science, Molecular Biology and Genetic Department, Bardakçı, Yüzüncü Yıl Üniversitesi Kampüsü, Tuşba, Van, PK: 65090, Van (TR)
  • Abdullah GÜLLER University of Bingöl, Faculty of Agriculture, Plant Protection Department, Selahaddin-i Eyyubi Mah. Üniversite Cad. No 1, PK: 12000, Bingöl (TR)
  • Mustafa USTA University of Van Yuzuncu Yil, Faculty of Agriculture, Plant Protection Department, Bardakçı, Yüzüncü Yıl Üniversitesi Kampüsü, Tuşba, Van, PK: 65090, Van (TR)
  • Zeynelabidin KURT University of Van Yuzuncu Yil, Faculty of Agriculture, Plant Protection Department, Bardakçı, Yüzüncü Yıl Üniversitesi Kampüsü, Tuşba, Van, PK: 65090, Van (TR)
  • Gülüstan KORKMAZ Van Agricultural Resarch Institute, Abdurrahman Gazi Mah. İskele Cad. Çalı Durağı Tuşba, Van (TR)

DOI:

https://doi.org/10.15835/nbha52113529

Keywords:

antiphytoviral compound, AMV, in silico modelling, molecular docking, phylogeny

Abstract

In 2021, a study was conducted in the Denizli region of Türkiye to investigate the phylogenetic relationship and presence of alfalfa mosaic alfamovirus (AMV) infecting pepper plants exhibiting viral disease symptoms. A total of 57 samples were collected, of which twenty-four tested positive for AMV with reverse transcriptase polymerase chain reaction (RT-PCR) assays. Samples from pepper plants displaying virus symptoms gave positive bands on the agarose gel, while healthy plants yielded negative results. One of the positive samples was randomly selected, cloned and sequenced. This sequence of the Denizli AMV isolate (753 bp) was recorded in the GenBank database with accession number OQ845956. The nucleotide sequence showed a high nucleotide consensus of 97%-99% compared with the nucleotide sequences of the same variants from different origins in GenBank. According to the phylogenetic tree generated through the Neighbour Joining (NJ) method, this AMV isolate belongs to the same group as Iranian isolates from various of hosts. Furthermore, in silico docking analysis of the coat protein (CP) of the AMV isolate and promising 12 essential oil compounds was performed to enable potential antiviral drug development. Docking study showed that eucalyptol, eugenol and carvacrol can make important contributions to the advancement of drug-based strategies for the managing of plant viruses by interacting with the virus coat protein of high binding energies, -5.3, -5.2 and -5.0 kcal mol-1, respectively. Although the presence of AMV in Denizli province has been reported previously, this study reports the phylogenetic relationships and docking analysis of the new AMV isolate in pepper crops.

References

Abdalla OA, Mohamed SA, Amal IE, Fahmay FG (2015). Genetic comparison between coat protein gene of alfalfa mosaic virus isolate infecting potato crop in upper Egypt and worldwide isolates. International Journal of Virology. https://doi.org/10.3923/ijv.2015.112.122

Agrios GH (1997). Plant Pathology. Academic Press (4th ed), San Diego.

Akdura N, Kılıç HÇ (2022). Hakkari İli Domates ve Biber Üretim Alanlarında Yonca Mozaik Virüsü ve Domates Lekeli Solgunluk Virüsü’nün Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26(3):435-440. https://doi.org/10.19113/sdufenbed.1082948

Al-Abrahim JS (2014). Molecular identification of Alfalfa mosaic virus isolated from naturally infected alfalfa (Medicago sativa) crop in Saudi Arabia. International Journal of Plant, Animal and Environmental Sciences 4(1):348-352.

Al-Shahwan IM, Abdalla OA, Al-Saleh MA (1997). Viruses in the northern potato producing regions of Saudi Arabia. Plant Pathology 46:91-94. https://doi.org/10.1046/j.1365-3059.1997.d01-203.x

Al-Shahwan IM, Abdalla OA, Al-Saleh MA, Amer MA (2017). Detection of new viruses in alfalfa, weeds and cultivated plants growing adjacent to alfalfa fields in Saudi Arabia. Saudi Journal of Biological Sciences 24(6):1336-1343. https://doi.org/10.1016/j.sjbs.2016.02.022

Arli-Sökmen M, Mennan H, Sevik MA, Ecevit O (2005). Occurence of viruses in field-grown pepper crops and some of their reservoir weeds hosts in Samsun. Turkey, Phytoparasitica 33(4):347-358. https://doi.org/10.1007/BF02981301

Assey GE, Mgohamwende R, Malasi WS (2021). A review of the impact of pesticides pollution on environment including effects, benefits and control. Journal of Pollution Effects and Control 9(282). http://doi.org/10.35248/2375-4397.21.9.282

Bandjo-Oreshkovikj K, Rusevski R, Kuzmanovska B, Jankulovska M, Popovski ZT (2017). Molecular detection and identification of Alfalfa mosaic virus (AMV) on pepper cultivated in open fields in R. Macedonia. Genetika 49(3):1047-1057. https://doi.org/10.2298/GENSR1703047B

Bergua M, Luis-Arteaga M, Escriu F (2014). Genetic diversity, reassortment, and recombination in Alfalfa mosaic virus population in Spain. Phytopathology 104(11):1241-1250. https://doi.org/10.1094/PHYTO-11-13-0309-R

Bezić N, Vuko E, Dunkić V, Ruščić M, Blažević I, Burčul F (2011). Antiphytoviral activity of sesquiterpene-rich essential oils from four Croatian Teucrium species. Molecules 16(9):8119-8129. https://doi.org/10.3390/molecules16098119

Bishop CD (1995). Antiviral activity of the essential oil of Melaleuca alternifolia (maiden amp; Betche) Cheel (tea tree) against tobacco mosaic virus. Journal of Essential Oil Research 7(6):641-644. https://doi.org/10.1080/10412905.1995.9700519

Bozkurt İA, Soylu S, Kara M, Soylu EM (2020). Chemical composition and antibacterial activity of essential oils isolated from medicinal plants against gall forming plant pathogenic bacterial disease agents. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 23(6):1474-1482. https://doi.org/10.18016/ksutarimdoga.vi.723544

Božovi´c M, Navarra A, Garzoli S, Pepi F, Ragno R (2017). Essential oils extraction: a 24-hour steam distillation systematic methodology. Natural Product Research 31:2387-2396. https://doi.org/10.1080/14786419.2017.1309534

Buzkan N, Demir M, Öztekin V, Mart C, Çağlar BK, Yilmaz MA (2006). Evaluation of the status of capsicum viruses in the main growing regions of Turkey. Bulletin OEPP 36(1):15-19. https://doi.org/10.1111/j.1365-2338.2006.00936.x

Cairns TC, Studholme DJ, Talbot NJ, Haynes K (2016). New and improved techniques for the study of pathogenic fungi. Trends in Microbiology 24(1):35-50. https://doi.org/10.1016/j.tim.2015.09.008

Campbell RN, Melugin SA (1971). Alfalfa mosaic virus strains from carrot and parsley. Plant Disease Reporter 55(4):322-325.

Carpar H, Sertkaya G (2016). Detection of some major viral problems at potato production in Hatay. Nevsehir Journal of Science and Technology, TARGİD Special Issue 135:143. https://doi.org/10.17100/nevbiltek.210978

Cemeroğlu B, Yemenicioğlu A, Özkan M (2009). Fruit and vegetable processing technology. Food Technology Society 3(1):122.

Che X, Jiang X, Liu X, Luan X, Liu Q, Cheng X, Wu X (2020). First report of Alfalfa mosaic virus on soybean in Heilongjiang, China. Plant Disease 104:3085. https://doi.org/10.1094/PDIS-04-20-0850-PDN

Cho IS, Yoon JY, Yang EY, Chae SY, Chung BN, Hammond J, Lim HS (2021). First report of tomato mosaic virus infecting chili pepper (Capsicum annuum L.) in Korea. Journal of Plant Pathology 103(3):1045-1046. http://dx.doi.org/10.1007/s42161-0 21-00854-w

Colimba J, Falcón E, Castro ER, Davila-Aldas D, Pallas V, Sanchez-Navarro JA, Gomez G (2016). First report of Alfalfa mosaic virus in red pepper plants in Ecuador. Plant Disease 100(5):1026. https://doi.org/10.1094/PDIS-07-15-0820-PDN

Coşkan S, Morca AF, Akbaş B, Celik A, Santosa AI (2022). Comprehensive surveillance and population study on plum pox virus in Ankara Province of Turkey. Journal of Plant Diseases and Protection 129(4):981-991. https://doi.org/10.1007/s41348-022-00597-5

Çelik İ, Özalp R, Çelik N, Polat İ, Sülü G, Ünlü A, (2013). Development of pepper lines resistant to Potato Virus Y (Pvy). Derim 30(2):42-53.

Çelik N, Özalp R, Göçmen M (2012). Detection of Potato Virus Y (PVY) pathotypes in greenhouse grown pepper and reactions of some pepper varieties against PVY in Antalya Province. Plant Protection Bulletin 52(3):235-246.

Çetinkiran AD, Baloğlu S (2011). Detection of the Alfalfa mosaic virus in pepper fields in Adana and Mersin. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi 26(2):89-98.

Demir M (2005). Determination of viruses transmitted with aphids red pepper producing in Kahramanmaraş. Master's Thesis, Kahramanmaraş University.

Demirel F (2021). In silico analysis of protein disulfide isomerases in soybean. Journal of Agriculture 4(1):48-56. https://doi.org/10.46876/ja.846023

Dunki´c V, Bezi´c N, Vuko E, Cukrov D (2010). Antiphytoviral activity of Satureja montana L. ssp. variegata (Host) P. W. Ball essential oil and phenol compounds on CMV and TMV. Molecules 15:6713-6721. https://doi.org/10.3390/molecules15106713

Dunkić, V., Bezić, N., and Vuko, E. (2011). Antiphytoviral activity of essential oil from endemic species Teucrium arduini. Natural Product Communications 6(9):1385-1388. https://doi.org/10.1177/1934578X1100600940

El-Attar AK, Mokbel SA, El-Banna OHM (2019). Molecular characterization of alfalfa mosaic virus and its effect on basil (Ocimum basilicum) tissues in Egypt. Journal of Virological Sciences 5:97-113.

Emamzadeh-Yazdi S, Mulabisana J, Prinsloo G, Cloete M, Kritzinger Q (2018). Plants containing cardiac glycosides showing antiphytoviral activity against Potato virus Y (PVYNTN) on tobacco plants. Journal of Plant Protection Research 58:397-403. https://doi.org/10.24425/jppr.2018.124648

Erdem N (2010). Detection of viruses infecting tobacco (Nicotinia tabacum L.) in Samsun province. Master's Thesis, Ondokuz Mayıs University.

Esfandiari N, Kohi-Habibi M, Mosahebi GH, Mozafari J (2005). Detection of Alfalfa mosaic virus (AMV) in pea field in Iran. Communications in Agricultural and Applied Biological Sciences 70(3):407-410.

Fegla G, El-Faham, YM, Younes HA, Fath-Allah MM (2000). Detection of alfalfa mosaic alfamovirus in seeds, seed parts and seedlings of two alfalfa cultivars. Journal of Plant Production 25(12):7599-7609. https://dx.doi.org/10.21608/j pp.2000.26 0252

Fereres A, Raccah B (2015). Plant virus transmission by insects. Encyclopedia of Life Sciences. John Wiley and Sons Ltd 1-12. https://doi.org/10.1002/9780470015902.a0000760.pub2

Feriotto G, Marchetti N, Costa V, Beninati S, Tagliati F, Mischiati C (2018). Chemical composition of essential oils from Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis, and their effects on the HIV‐1 Tat protein function. Chemistry and Biodiversity 15(2):e1700436. https://doi.org/10.1002/cbdv.201700436

Fidan Ü (1992). Studies on alfalfa mosaic virus of alfalfa in Aegean region. Journal of Turkish Phytopathology 21(1):15-20.

Foissac X, Svanella-Dumas L, Gentit P, Dulucq MJ, Candresse T (2001). Polyvalent detection of fruit tree Tricho, Capillo- and Foveaviruses by nested RT-PCR using degenerated and inosine-containing primers (PDO RT-PCR). Acta Horticulturae 550:37-44. https://doi.org/10.17660/ActaHortic.2001.550.2

Gan X, Hu D, Wang Y, Yu L, Song B (2017). Novel trans-ferulic acid derivatives containing a chalcone moiety as potential activator for plant resistance induction. Journal of Agricultural and Food Chemistry 65(22):4367-4377. https://doi.org/10.1021/acs.jafc.7b00958

Golino DA, Fuchs M, Al Rwahnih M, Farrar K, Schmidt A, Martelli GP (2017). Regulatory aspects of grape viruses and virus diseases: certification, quarantine, and harmonization. Grapevine Viruses: Molecular Biology, Diagnostics and Management. pp 581-598. http://dx.doi.org/10.1007/978-3-319-57706-7_28

Güller A, Usta M, Korkmaz G (2022). Phylogenetic relationship of alfalfa mosaic virus (AMV) isolate identified in bingöl province of Turkey. Turkish Journal of Agricultural and Natural Sciences 9(1):166-172. https://doi.org/10.30910/turkjans.947617

He B, Fajolu OL, Wen RH, Hajimorad MR (2010). Seed transmissibility of Alfalfa mosaic virus in soybean. Plant Health Progress 11:41. http://dx.doi.org/10.1094/PHP-2010-1227-01-BR

Hiruki C, Hampton RO (1990). Alfalfa Mosaic. APS Press (2nd ed) St. Paul.

Iobbi V, Lanteri AP, Minuto A, Santoro V, Ferrea G, Fossa P, Bisio A (2022). Autoxidation products of the methanolic extract of the leaves of Combretum micranthum exert antiviral activity against tomato brown rugose fruit virus (ToBRFV). Molecules 27(3):760. https://doi.org/10.3390/molecules27030760

Jaspars EMJ (2018). Interaction of Alfalfa mosaic virus nucleic acid and protein. Molecular Plant Virology 1:155-221. https://doi.org/10.1201/9781351074797

Jeyaraj G, Mohideen HS, Geetanjali AS (2021). Ab-initio modelling and docking evaluation of geographically derived coat proteins of chilli leaf curl virus with flavonoids and chemical compounds. Journal of Applied Biology and Biotechnology 9(1):40-51. http://dx.doi.org/10.7324/JABB.2021.95.1s7

Jones RA (2006). Control of plant virus diseases. Advances in Virus Research 67:205-244. https://doi.org/10.1016/S0065-3527(06)67006-1

Juglal S, Govinden R, Odhav B (2002). Spice oils for the control of co-occurring mycotoxin-producing fungi. Journal of Food Protection 65:683-687. https://doi.org/10.4315/0362-028x-65.4.683

Kalemba D, Kunicka A (2003). Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry 10(10):813-829. http://dx.doi.org/10.2174/0929867033457719

Karavina C, Ibaba JD, Gubba A (2021). Potato virus Y isolates infecting bell pepper from parts of Southern Africa display distinct recombination patterns. Physiological and Molecular Plant Pathology 114:101638. http://dx.doi.org/10.1016/j.pmpp.2021.101638

Keleş-Öztürk P (2017). The detection of virus diseases of pepper in the East Mediterranean region and determination of the reaction of Karaisali pepper population against the most common virus and some resistance genes. Doctorate Thesis, Çukurova University.

Keleş-Öztürk P, Baloğlu S (2020). The determination of virus diseases for pepper grown into open fields in Adana. Çukurova Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 39(7):69-78.

Kenyon L, Kumar S, Tsai WS, Hughes JD (2014). Virus diseases of peppers (Capsicum spp.) and their control. Advances in Virus Research 90:297‐354. https://doi.org/10.1016/B978-0-12-801246-8.00006-8

Kılıc ÇH, Yardimci N, Toplu S, Konu A (2015). Cucumber mosaic virus and pepper mild mottle virus in pepper growing areas in Burdur Province, Turkey. International Journal of Scientific and Technological Research 1(1):50-60.

Kılıç ÇH, Yardımcı N (2015). Occurrence of Alfalfa mosaic virus (AMV) infecting bean crop in Burdur Province, Turkey. Asian Journal of Agriculture and Food Sciences 3(2):173-177. https://doi.org/10.24203/AJAFS.V3I2.2520

Kılıç ÇH, Yardimci N, Ürgen G (2013). Investigation of some important virus diseases on bean plants in Muğla-Fethiye subprovince. Journal of Agricultural Faculty of Uludağ University (Turkey) 27(1):1-8.

Kvíčala BA (1975). Some natural weed hosts of alfalfa mosaic virus. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite Naturwissenschaftliche Abteilung: Allgemeine, Landwirtschaftliche und Technische Mikrobiologie 130(8):704-708. https://doi.org/10.1016/S0044-4057(75)80052-9

Lamiri A, Lhaloui S, Benjilali B, Berrada M (2001). Insecticidal effects of essential oils against Hessian fly, Mayetiola destructor (Say). Field Crops Research 71(1):9-15. http://dx.doi.org/10.1016/S0378-4290(01)00139-3

Lecoq H, Katis N (2014). Control of cucurbit viruses. Advances in Virus Research 90:255-296. https://doi.org/10.1016/B978-0-12-801246-8.00005-6

Lengai GM, Muthomi JW, Mbega ER (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African 7:e00239. https://doi.org/10.1016/j.sciaf.2019.e00239

Lu A, Wang T, Hui H, Wei X, Cui W, Zhou C, Wang Q (2019). Natural products for drug discovery: discovery of gramines as novel agents against a plant virus. Journal of Agricultural and Food Chemistry 67(8):2148-2156. https://doi.org/10.1021/acs.jafc.8b06859

Lu M, Han Z, Xu Y, Yao L (2013). In vitro and in vivo anti-tobacco mosaic virus activities of essential oils and individual compounds. Journal of Microbiology and Biotechnology 23(6):771-778. https://doi.org/10.4014/jmb.1210.10078

Ma L, Yao L (2020). Antiviral effects of plant-derived essential oils and their components: an updated review. Molecules 25(11):2627. https://doi.org/10.3390/molecules25112627

Michaelakis A, Theotokatos SA, Koliopoulos G, Chorianopoulos NG (2007). Essential oils of Satureja species: insecticidal effect on Culex pipiens larvae (Diptera: Culicidae). Molecules 12(12):2567-2578. https://doi.org/10.3390%2F12 122567

Mohan Kumar R, Anantapur R, Peter A, HV C (2022). Computational investigation of phytoalexins as potential antiviral RAP-1 and RAP-2 (Replication Associated Proteins) inhibitor for the management of cucumber mosaic virus (CMV): a molecular modeling, in silico docking and MM-GBSA study. Journal of Biomolecular Structure and Dynamics 40(22):12165-12183. https://doi.org/10.1080/07391102.2021.1968500

Moon T, Wilkinson JM, Cavanagh HM (2006). Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflata. Parasitology Research 99:722-728. https://doi.org/10.1007/s00436-006-0234-8

Moradi Z, Mehrvar M (2019). Genetic variability and molecular evolution of Bean common mosaic virus populations in Iran: comparison with the populations in the world. European Journal of Plant Pathology 154:673-690. http://dx.doi.org/10.1007/s10658-019-01690-6

Morca AF, Celik A, Coşkan S, Santosa AI, Akbaş B (2022). Population analysis on tomato spotted wilt virus isolates inducing various symptoms on tomato, pepper, and Chenopodium album in Turkey. Physiological and Molecular Plant Pathology 118:101786. https://doi.org/10.1016/j.pmpp.2022.101786

Morca AF, Coşkan S, Akbaş B, Karahan A (2022). First report of alfalfa mosaic virus on Petroselinum crispum in Turkey. Journal of Plant Pathology 104(2):881-882. https://doi.org/10.1007/s42161-022-01082-6

Morca AF, Akbaş B, Santosa AI, Topkaya Ş, Çelik A (2024). Turkish isolates of alfalfa mosaic virus belong to a distinct lineage among global population. Physiological and Molecular Plant Pathology 102263. https://doi.org/10.1016/j.pmpp.2024.102263

Özdemir S, Erilmez S (2012). First report of Alfalfa mosaic virus and Cucumber mosaic virus in pepino in Turkey. Journal of Plant Pathology 94(4):84-105.

Özdemir S, Erilmez S (2007). Detection of some viral agents in pepper, eggplant and lettuce production areas in Denizli province. II. Proceedings of the Plant Protection Congress. Türkiye 114s.

Özdemir S, Erilmez S, Paylan Cİ (2011). Serological and Molecular Identification of Alfalfa mosaic alfamovirus in potato production areas in Aegean region. IV. Proceedings of the Plant Protection Congress. Türkiye 410s.

Özdemir S, Erilmez S, Paylan IC (2011). First report of Alfalfa mosaic virus in eggplant in Turkey. The Journal of Plant Pathology 93(4):63-89.

Parikh L, Agindotan BO, Burrows ME (2021). Antifungal activity of plant-derived essential oils on pathogens of pulse crops. Plant Disease 105(6):1692-1701. https://doi.org/10.1094/pdis-06-20-1401-re

Parrella G, Acanfora N, Bellardi MG (2010). First record and complete nucleotide sequence of Alfalfa mosaic virus from Lavandula stoechas in Italy. Plant Disease 94(7):924. https://doi.org/10.1094/pdis-94-7-0924a

Parrella G, Acanfora N, Orílio A, Navas-Castillo J (2011). Complete nucleotide sequence of a Spanish isolate of Alfalfa mosaic virus: Evidence for additional genetic variability. Archives of Virology 156:1049-1052. https://doi.org/10.1007/s00705-011-0941-z

Pazarlar S, Gümüş M, Öztekin GB (2013). The effects of tobacco mosaic virus infection on growth and physiological parameters in some pepper varieties (Capsicum annuum L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41(2):427-433. http://dx.doi.org/10.15835/nbha4129008

Pernezny K, Roberts PD, Murphy JF, Goldberg NP (2003). Compendium of pepper diseases. The American Phytopathological Society 63. https://doi.org/10.1080/01140671.2003.9514274

Petrov N (2014). Effect of pepper mild mottle virus infection on pepper and tomato plants. Science and Technology IV 6:61-64.

Pourrahim R, Farzadfar S (2015). Biological and molecular characterization of Alfalfa mosaic virus infecting trumpet creeper (Campsis radicans) in Iranian Journal of Plant Pathology 164(4):276-280. http://dx.doi.org/10.1111/jph.12416

Raveau R, Fontaine J, Lounès-Hadj Sahraoui A (2020). Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 9(3):365. https://doi.org/10.3390/foods9030365

Rubio L, Galipienso L, Ferriol I (2020). Detection of plant viruses and disease management: Relevance of genetic diversity and evolution. Frontiers in Plant Science 11:1092. https://doi.org/10.3389/fpls.2020.01092

Sertkaya G, Çarpar H, Sertkaya E (2017). Detection of Alfalfa mosaic virus (AMV) in potato production areas in Hatay Province of Turkey. Journal of the Institute of Science and Technology (JIST) 7(1):23-29. http://dx.doi.org/10.21597/jist.2017.81

Sertkaya G, Özdağ Y (2017). Investigation on viruses causing yellowing disease in pepper in Hatay-Turkey. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi 22(1):16-22.

Smit CH, Jaspars EM (1982). Evidence that RNA 4 of Alfalfa mosaic virus does not replicate autonomously. Virology 117:271-274. https://doi.org/10.1016/0042-6822(82)90528-1

Song P, Yu X, Yang W, Wang Q (2021). Natural phytoalexin stilbene compound resveratrol and its derivatives as anti-tobacco mosaic virus and anti-phytopathogenic fungus agents. Scientific Reports 11(1):16509.

https://doi.org/10.1038/s41598-021-96069-1

Song S, Liu H, Zhang J, Pan C, Li Z (2019). Identification and characterization of complete genome sequence of Alfalfa mosaic virus infecting Gynostemma pentaphyllum. European Journal of Plant Pathology 154:491-497. https://doi.org/10.1007/s10658-018-01647-1

Souto AL, Sylvestre M, Tölke ED, Tavares JF, Barbosa-Filho JM, Cebrián-Torrejón G (2021). Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules 26(16):4835. https://doi.org/10.3390/molecules26164835

Stanković I, Vrandečıć K, Ćosıć J, Mılojevıć K, Bulajıć A, Krstıć B (2014). The spreading of Alfalfa mosaic virus in lavandin in Croatia. Pesticidi i Fitomedicina 29:115-122. http://dx.doi.org/10.2298/PIF1402115S

Taglienti A, Donati L, Ferretti L, Tomassoli L, Sapienza F, Sabatino M, Ragno R (2022). In vivo antiphytoviral activity of essential oils and hydrosols from Origanum vulgare, Thymus vulgaris, and Rosmarinus officinalis to control zucchini yellow mosaic virus and tomato leaf curl New Delhi virus in Cucurbita pepo L. Frontiers in Microbiology 13:840893. https://doi.org/10.3389/fmicb.2022.840893

Topkaya Ş (2022). Molecular characterisation of Alfalfa mosaic virus isolates in potato from the Tokat province, Türkiye. Mediterranean Agricultural Sciences 35(2):75-81. https://doi.org/10.29136/mediterranean.1045447

Topkaya Ş, Çelik A, Santosa AI, Jones RA (2023). Molecular analysis of the global population of potato virus S redefines its phylogeny, and has crop biosecurity implications. Viruses 15(5):1104. https://doi.org/10.3390/v15051104

Trucco V, De Breuil S, Bejerman N, Lenardon S, Giolitti F (2014). Complete nucleotide sequence of Alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina. Virus Genes 48:562-565. https://doi.org/10.1007/s11262-014-1045-0

Trucco V, Castellanos Collazo O, Vaghi Medina CG, Cabrera Mederos D, Lenardon S, Giolitti F (2021). Alfalfa mosaic virus (AMV): genetic diversity and a new natural host. Journal Plant Pathology 104:349-356. http://dx.doi.org/10.1007/s42161-021-00961-8

Trucco V, Castellanos Collazo O, Vaghi Medina CG, Cabrera Mederos D, Lenardon S, Giolitti F (2022). Alfalfa mosaic virus (AMV): Genetic diversity and a new natural host. Journal of Plant Pathology 104(1):349-356. https://doi.org/10.1007/s42161-021-00961-8

Usta M, Güller A (2020). Molecular characterization of the coat protein genome of alfalfa mosaic virus (AMV) isolates from alfalfa in Van province. Journal of the Institute of Science and Technology 10(4):2366-2377. https://doi.org/10.21597/jist.719099

Vrandečić K, Jurković D, Ćosić J, Stanković I, Vučurović A, Bulajić A, Krstić B (2013). First report of alfalfa mosaic virus infecting Lavandula× Intermedia in Croatia. Plant Disease 97(7):1002-1002. https://doi.org/10.1094/pdis-12-12-1142-pdn

Vuko E, Dunkić V, Bezić N, Ruščić M, Kremer D (2012). Chemical composition and antiphytoviral activity of essential oil of Micromeria graeca. Natural Product Communications 7(9):1227-1230. http://dx.doi.org/10.1177/1934578X 1200 700933

Wani AR, Yadav K, Khursheed A, Rather MA (2021). An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microbial Pathogenesis 152:104620. https://doi.org/10.1016/j.micpath.2020.104620

Wang X, Liu C, Tan Z, Zhang J, Wang R, Wang Y, Jiang X, Wu B (2023). Population genetics and phylogeography of alfalfa mosaic virus in China and a comparison with other regional epidemics based on the cp gene. Frontiers in Plant Science 13:1105198. https://doi.org/10.3389/fpls.2022.1105198

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, (…) Schwede T (2018). Swıss-Model: homology modelling of protein structures and complexes, Nucleic Acids. Research 46:296-303. https://doi.org/10.1093%2Fnar%2Fgky427

Wintermantel WM, Natwick ET (2012). First report of Alfalfa mosaic virus infecting basil (Ocimum basilicum) in California. Plant Disease 96(2):295. https://doi.org/10.1094/pdis-06-11-0516

Wu B, Zhang Y, Kong J, Zhang X, Cheng S (2009). In silico predication of nuclear hormone receptors for organic pollutants by homology modeling and molecular docking. Toxicology Letters 191(1):69-73. https://doi.org/10.1016/j.toxlet.200 9.08.005

Xu H, Nie J (2006). Identification, characterization, and molecular detection of Alfalfa mosaic virus in potato. Phytopathology 96:1237-1242. https://doi.org/10.1094/phyto-96-1237

Yılmaz MA, Davis RF (1984). Purification and particle morphology of TMV, CMV, and ZYMV isolated from various cultivated crops grown along the Mediterranean Coast of Turkey. Journal Turkish Phytopathology 13(1):29-38.

Zhao L, Feng C, Hou C, Hu L, Wang Q, Wu Y (2015). First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses. PloS One 10(2):e0117496. https://doi.org/10.1371/journal.pone.0117496

Zhao L, Feng C, Wu K, Chen W, Chen Y, Hao X, Wu Y (2017). Advances and prospects in biogenic substances against plant virus: A review. Pesticide Biochemistry and Physiology 135:15-26. https://doi.org/10.1016/j.pestbp.2016.07.003

Zitikaitė I, Samuitienė M (2008). Identifcation and some properties of Alfalfa mosaic alfamovirus isolated from naturally infected tomato crop. Biologija 54(2):83-88. http://dx.doi.org/10.2478/v10054-008-0016-6

Downloads

Additional Files

Published

2024-03-27

How to Cite

DEMİREL, S., GÜLLER, A., USTA, M., KURT, Z., & KORKMAZ, G. (2024). Coat protein of alfalfa mosaic alfamovirus (AMV) from Türkiye: genetic inference and in silico docking analysis for potential antiphytoviral purposes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), 13529. https://doi.org/10.15835/nbha52113529

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52113529