Factors affecting the mass transfer kinetics of osmotically dehydrated chayote (Sechium edule (Jacq.) Sw.)

Authors

  • Karina HUERTA-VERA Postgraduate College Montecillo Campus, Highway México-Texcoco, km. 36.5, P.C. 56230, Montecillo, Texcoco (MX)
  • Adriana CONTRERAS-OLIVA Postgraduate College Córdoba Campus, Federal Highway Córdoba-Veracruz, km 348, Congregation Manuel León, P.C. 94946, Amatlán de los Reyes, Veracruz (MX)
  • Ma. de Lourdes ARÉVALO-GALARZA Postgraduate College Montecillo Campus, Highway México-Texcoco, km. 36.5, P.C. 56230, Montecillo, Texcoco (MX)
  • Enrique FLORES-ANDRADE Veracruzana University, Faculty of Chemical Sciences, Ote. 6 1009, Rafael Alvarado, P.C. 94340, Orizaba, Veracruz (MX)
  • Ma. Bernardita PÉREZ-GAGO Valencian Institute of Agricultural Research, Center for Postharvest Technology, Highway CV-315, km 10.7, P.C. 46113, Moncada, Valencia (ES)
  • Diana P. USCANGA-SOSA Postgraduate College Córdoba Campus, Federal Highway Córdoba-Veracruz, km 348, Congregation Manuel León, P.C. 94946, Amatlán de los Reyes, Veracruz (MX)

DOI:

https://doi.org/10.15835/nbha52313507

Keywords:

minimally processed foods, solid content, vacuum pulse, water activity, water loss

Abstract

The aim of this study was to apply osmotic dehydration (OD) to produce minimally processed chayote (Sechium edule (Jacq.) Swartz) slices. Thus, the effect of osmotic solution concentration, temperature, processing time, and vacuum pulse application on mass transfer during osmotic dehydration of the fruit was evaluated. The kinetics of water loss (WL), solids gain (SG), and water activity (aw) were obtained using sucrose solutions with concentrations of 40, 50 and 60 °Bx at 25, 35 and 45 °C. Osmotic solution concentration, temperature, and processing time had a greater influence than vacuum pulse application on WL and SG. The temperature showed an Arrhenius-type dependence on effective diffusivity. The osmodehydrated chayote had lower aw (up to 0.846), higher total soluble solids (TSS) content (up to 31.9 °Bx) and purer and more intense color (up to 18.75 in chroma) compared to fresh chayote. These findings suggest that OD allows for the production of minimally processed chayote that could be included in quick-cook products, such as salads or soup mixes.

References

Abraão AS, Lemos AM, Vilela A, Sousa JM, Nunes FM (2013). Influence of osmotic dehydration process parameters on the quality of candied pumpkins. Food and Bioproducts Processing 91(4):481-494. https://doi.org/10.1016/j.fbp.2013.04.006

Aguiñiga-Sánchez I, Soto-Hernández M, Cadena-Iñiguez J, Ruíz-Posadas L, Cadena-Zamudio JD, González-Ugarte AK, … Santiago-Osorio E (2015). Fruit extract from a Sechium edule hybrid induce apoptosis in leukaemic cell lines but not in normal cells. Nutrition and Cancer 67(2):250-257. https://doi.org/10.1080/01635581.2015.989370

Assis FR, Morais RMSC, Morais AMMB (2016). Mathematical modelling of osmotic dehydration kinetics of apple cubes. Journal of Food Processing and Preservation 41:e12895. https://doi.org/10.1111/jfpp.12895

Azuara E, Beristain CI, Gutiérrez GF (2002). Osmotic dehydration of apples by immersion in concentrated sucrose/maltodextrin solutions. Journal of Food Processing Preservation 26:295-306. https://doi.org/10.1111/j.1745-4549.2002.tb00486.x

Azuara E, Cortes R, García HS, Beristain CI (1992). Kinetic model for osmotic dehydration and its relationship with Fick’s second law. International Journal of Food Science and Technology 4: 409-418. https://doi.org/10.1111/j.1365-2621.1992.tb01206.x

Barat JM, Chiralt A, Fito P (2001). Effect of osmotic solution concentration, temperature and vacuum impregnation pretreatment on osmotic dehydration kinetics of apple slices. Food Science and Technology International 7(5):451-456. https://doi.org/10.1106/4L77-UPTY-KEAQ-3TIV

Barragán-Iglesias J, Rodríguez-Ramírez J, Sablani SS, Méndez-Lagunas LL (2018). Texture analysis of dried papaya (Carica papaya L., cv. Maradol) pretreated with calcium and osmotic dehydration. Drying Technology 37(7):906-919. https://doi.org/10.1080/07373937.2018.1473420

Batista de Medeiros RA, da Silva Júnior EV, Fernandes da Silva JH, da Cunha Ferreira Neto O, Rupert Brandāo SC, Pimenta Barros ZM, … Moreira Azoubel P (2019). Effect of different grape residues polyphenols impregnation techniques in mango. Journal of Food Engineering 262:1-8. https://doi.org/10.1016/j.jfoodeng.2019.05.011

Cadena-Iñiguez J, Arévalo-Galarza LM, Ruiz-Posadas LM, Aguirre-Medina JF, Soto-Hernández M, Luna-Cavazos M, Zavaleta-Mancera HA (2006). Quality evaluation and influence of 1-MCP on Sechium edule (Jacq.) Sw. fruit during postharvest. Postharvest Biology and Technology 40(2):170-176. https://doi.org/10.1016/j.postharvbio.2005.12.013

Cadena-Iñiguez J, Soto-Hernández M, Arévalo-Galarza L, Ruiz-Posadas LM, Avendaño -Arrazate CH, Santiago-Osorio E, … Ochoa-Martínez D (2007). Production, genetics, postharvest management and pharmacological characteristics of Sechium edule (Jacq.) Sw. In: Global Science Books (Eds). Fresh Produce. Global Science Books pp 41-53.

Cadena-Iñiguez J, Soto-Hernández M, Arévalo-Galarza ML, Avendaño-Arrazate CH, Aguirre-Medina JF, Ruiz-Posadas LM (2011). Caracterización bioquímica de variedades domesticadas de chayote Sechium edule (Jacq.) Sw. comparadas con parientes silvestres [Biochemical characterization of domesticated varieties of chayote Sechium edule (Jacq.) Sw. compared with wild relatives]. Revista Chapingo Serie Horticultura 2:45-55.

Capossio JP, Fabani MP, Reyes-Urrutia A, Torres-Sciancalepore R, Deng Y, Baeyens J, Rodriguez R, Mazza G (2022). Sustainable solar drying of brewer’s spent grains: A comparison with conventional electric convective drying. Processes 10(2):339. https://doi.org/10.3390/pr10020339

Castro-Giráldez M, Fito PJ, Fito P (2011). Nonlinear thermodynamic approach to analyze long time osmotic dehydration of parenchymatic apple tissue. Journal of Food Engineering 102(1):34-42. https://doi.org/10.1016/j.jfoodeng.2010.07.032

Chaguri L, Sanchez MS, Flammia VP, Tadini CC (2016). Green banana (Musa cavendishii) osmotic dehydration by non-caloric solutions: modeling, physical-chemical properties, color, and texture. Food and Bioprocess Technology 10:615-629. https://doi.org/10.1007/s11947-016-1839-2

Chakraborty R, Samanta R (2016). Concurrent osmotic dehydration and vacuum drying of kiwi fruit (Actinidia deliciosa cv. Hayward) under far infrared radiation: process optimization, kinetics and quality assessment. Journal of Food Process Engineering 40(2):e12391. https://doi.org/10.1111/jfpe.12391

Chiralt A, Fito P (2003). Transport Mechanisms in Osmotic Dehydration: The Role of the Structure. Food Science and Technology International 9(3):179-186. https://doi.org/10.1177/1082013203034757

Corrêa JLG, Ernesto DB, Alves JGLF, Andrade RS (2014). Optimization of vacuum pulse osmotic dehydration of blanched pumpkin. International Journal of Food Science and Technology 49(9):2008-2014. https://doi.org/10.1111/ijfs.12502

Corrêa JLG, Pereira LM, Vieira GS, Hubinger MD (2010). Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. Journal of Food Engineering 96(4):498-504. http://dx.doi.org/10.1016/j.jfoodeng.2009.08.032

De Jesus Junqueira JR, Gomes Corrêa JL, Soares de Mendonça K, Silva Resende N, De Barros Vilas Boas EV (2017). Influence of sodium replacement and vacuum pulse on the osmotic dehydration of eggplant slices. Innovative Food Science and Emerging Technologies 41:10-18. http://dx.doi.org/10.1016/j.ifset.2017.01.006

De Jesus Junqueira JR, Gomes Corrêa JLG, Soares de Mendonça K, De Mello Júnior RE, Umbelina de Souza A (2018). Pulsed vacuum osmotic dehydration of beetroot, carrot and eggplant slices: Effect of vacuum pressure on the quality parameters. Food and Bioprocess Technology 11:1863-1875. https://doi.org/10.1007/s11947-018-2147-9

De Mello Júnior RE, Gomes Corrêa JLG, José Lopes F, Umbelina de Souza A, Ribeiro da Silva KC (2019). Kinetics of the pulsed vacuum osmotic dehydration of green fig (Ficus carica L.). Heat and Mass Transfer 55:1685-1691. https://doi.org/10.1007/s00231-018-02559-w

Dermesonlouoglou EK, Giannakourou MC (2018). Modelling dehydration of apricot in a non-conventional multi-component osmotic solution: effect on mass transfer kinetics and quality characteristics. Journal of Food Science and Technology 55:4079-4089. https://doi.org/10.1007/s13197-018-3334-4

Derossi A, Severini C, Del Mastro A, De Pilli T (2015). Study and optimization of osmotic dehydration of cherry tomatoes in complex solution by response surface methodology and desirability approach. LWT - Food Science and Technology 60(2):641-648. https://doi.org/10.1016/j.lwt.2014.10.056

Escriche I, Garcia-Pinchi R, Andrés A, Fito P (2000). Osmotic dehydration of kiwifruit (Actznidza chinensis): Fluxes and mass transfer kinetics. Journal of Food Process Engineering 23(3):191-205. https://onlinelibrary.wiley.com/doi/10.1111/j.1745-4530.2000.tb00511.x

Falade KO, Igbeka JC, Ayanwuyi FA (2007). Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering 80(3):979-985. https://doi.org/10.1016/j.jfoodeng.2006.06.033

Fito P (1994). Modelling of vacuum osmotic dehydration of food. Journal of Food Engineering 22(1-4):313-328. https://doi.org/10.1016/0260-8774(94)90037-X

Flores-Andrade E, Beristain CI, Vernon-Carter EJ, Gutiérrez GF, Azuara E (2009). Enthalpy-entropy compensation and water transfer mechanism in osmotically dehydrated agar gel. Drying Technology: An International Journal 27(9):999-1009. https://doi.org/10.1080/07373930902904921

Gomes Corrêa JL, Ernesto DB, Soares de Mendonça K (2016). Pulsed vacuum osmotic dehydration of tomatoes: Sodium incorporation reduction and kinetics modeling. LWT - Food Science and Technology 71:17-24. http://dx.doi.org/10.1016/j.lwt.2016.01.046

Guiné RPF (2018). The drying of foods and its effect on the physical-chemical, sensorial and nutritional properties. International Journal of Food Engineering 4(2):93-100. https://doi.org/10.18178/ijfe.4.2.93-100

Huerta-Vera K, Flores-Andrade E, Pérez-Sato J A, Morales-Ramos V, Pascual-Pineda LA, Contreras-Oliva A (2017). Enrichment of banana with Lactobacillus rhamnosus using double emulsion and osmotic dehydration. Food and Bioprocess Technology 10:1053-1062. https://doi.org/10.1007/s11947-017-1879-2

Ito AP, Valeriano Tonn R, Jin Park K, Dupas Hubinger M (2007). Influence of process conditions on the mass transfer kinetics of pulsed vacuum osmotically dehydrated mango slices. Drying Technology: An International Journal 25(19):1769-1777. http://dx.doi.org/10.1080/07373930701593263

Junqueira JRJ, Corrêa JLG, Mendonca KS, Mello Junior RE, Souza AU (2020). Modeling mass transfer during osmotic dehydration of different vegetable structures under vacuum conditions. Food Science and Technology 41(2):439-448. https://doi.org/10.1590/fst.02420

Kvapil MF, Chaillou LL, Qüesta AG, Mascheroni RH (2020). Osmotic dehydration of pumpkin (Cucurbita moschata) in sucrose and sucrose-salt solutions. effect of solution composition and sample size. Latin American Applied Research 50(3):241-246. https://doi.org/10.52292/j.laar.2020.73

Lazarides HN (2001). Reasons and possibilities to control solids uptake during osmotic treatment of fruits and vegetables. In: Fito P, Chiralt A, Barat JM, Spiess WEL, Behsnilian D (Eds). Osmotic dehydration & vacuum impregnation: Applications in food industries. CRC Press, Boca Raton, pp 33-42. https://doi.org/10.1201/9780429132216

Lazarides HN, Mavroudis NE (1996). Kinetics of osmotic dehydration of a highly shrinking vegetable tissue in a salt-free medium. Journal of Food Engineering 30(1-2):61-74. https://doi.org/10.1016/S0260-8774(96)00042-8

Loizzo MR, Bonesi M, Menichini F, Tenuta MC, Leporini M, Tundis R (2016). Antioxidant and carbohydrate-hydrolyzing enzymes potential of Sechium edule (Jacq.) Swartz (Cucurbitaceae) peel, leaves and pulp fresh and processed. Plant Foods for Human Nutrition 71:381-387. https://doi.org/10.1007/s11130-016-0571-4

Lombard GE, Oliveira JC, Fito P, Andrés A (2008). Osmotic dehydration of pineapple as a pre-treatment for further drying. Journal of Food Engineering 85(2):277-284. https://doi.org/10.1016/j.jfoodeng.2007.07.009

Moraga MJ, Moraga G, Martínez-Navarrete N (2011). Effect of the re-use of the osmotic solution on the stability of osmodehydro-refrigerated grapefruit. LWT - Food Science and Technology 44(1):35-41. http://dx.doi.org/10.1016/j.lwt.2010.05.018

Moreno J, Simpson R, Pizarro N, Parada K, Pinilla N, Reyes JE, Almonacid S (2012). Effect of ohmic heating and vacuum impregnation on the quality and microbial stability of osmotically dehydrated strawberries (cv. Camarosa). Journal of Food Engineering 110(2):310-316. https://doi.org/10.1016/j.jfoodeng.2011.03.005

Moreno J, Simpson R, Sayas M, Segura I, Aldana O, Almonacid S (2011). Influence of ohmic heating and vacuum impregnation on the osmotic dehydration kinetics and microstructure of pears (cv. Packham’s Triumph). Journal of Food Engineering 104(4):621-627. https://doi.org/10.1016/j.jfoodeng.2011.01.029

Mujaffar S, Ramsumair N (2019). Fluidized bed drying of pumpkin (Cucurbita sp.) seeds. Foods 8(5):147. https://doi.org/10.3390/foods8050147

Ordoñez A, Gomez J, Vattuone M, Isla M (2006). Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chemistry 97(3):452-458. https://doi.org/10.1016/j.foodchem.2005.05.024

Panades G, Castro D, Chiralt A, Fito P, Nuñez M, Jimenez R (2008). Mass transfer mechanisms occurring in osmotic dehydration of guava. Journal of Food Engineering 87(3):386-390. https://doi.org/10.1016/j.jfoodeng.2007.12.021

Rodrigues ACC, Cunha RL, Hubinger MD (2003). Rheological properties and colour evaluation of papaya during osmotic dehydration processing. Journal of Food Engineering 59(2-3):129-135. http://dx.doi.org/10.1016/S0260-8774(02)00442-9

Ruiz-López II, Huerta-Mora IR, Vivar-Vera MA, Martínez-Sánchez CE, Herman-Lara E (2010). Effect of osmotic dehydration on air-drying characteristics of chayote. Drying Technology: An International Journal 28(10):1201-1212. http://dx.doi.org/10.1080/07373937.2010.482716

Ruiz-López II, Ruiz-Espinosa H, Herman-Lara E, Zárate-Castillo G (2011). Modeling of kinetics, equilibrium and distribution data of osmotically dehydrated carambola (Averrhoa carambola L.) in sugar solutions. Journal of Food Engineering 104(2):218-226. https://doi.org/10.1016/j.jfoodeng.2010.12.013

Schincariol Paes M, Ferreira Del Pintor JP, de Alcântara Pessoa Filho P, Tadini CC (2019). Mass transfer modeling during osmotic dehydration of cambuci (Campomanesia phaea (O. Berg) Landrum) slices and quality assessment. Journal of Molecular Liquids 273:408-413. https://doi.org/10.1016/j.molliq.2018.10.040

Seguí L, Fito PJ, Fito P (2012). Understanding osmotic dehydration of tissue structured foods by means of a cellular approach. Journal of Food Engineering 110(2):240-247. http://dx.doi.org/10.1016/j.jfoodeng.2011.05.012

Shafirany MZ, Susilawati Y, Muhtadi A, Milanda T, Chaerunissa AY (2018). Antihypertensive activities instant granul of combination extract roselle flower petals (Hibiscus sabdariffaL.), chayote fruit (Sechium edule (Jacq.) Sw.) and aloe vera leaves (Aloe Vera L.) in white male rats. Research Journal of Chemistry and Environment 22(1):58-65.

Sharma M, Dash KK (2019). Effect of ultrasonic vacuum pretreatment on mass transfer kinetics during osmotic dehydration of black jamun fruit. Ultrasonics – Sonochemistry 58:104693. https://doi.org/10.1016/j.ultsonch.2019.104693

Shi J, Maguer ML (2003). Mass transfer in cellular material at solid–liquid contacting interface. LWT-Food Science and Technology 36(1):3-11. https://doi.org/10.1016/S0023-6438(02)00219-0

Shi XQ, Fito P, Chiralt A (1995). Influence of vacuum treatment on mass transfer during osmotic dehydration of fruits. Food Research International 28(5):445-454. https://doi.org/10.1016/0963-9969(96)81391-3

Souraki BA, Ghavami M, Tondro H (2014). Correction of moisture and sucrose effective diffusivities for shrinkage during osmotic dehydration of apple in sucrose solution. Food and bioproducts processing 92(1):1-8. http://dx.doi.org/10.1016/j.fbp.2013.07.002

Torres JD, Talens P, Carot JM, Chiralt A, Escriche I (2007). Volatile profile of mango (Mangifera indica L.) as affected by osmotic dehydration. Food Chemistry 101(1):219-228. https://doi.org/10.1016/j.foodchem.2006.01.020

Viana AD, Corrêa JLG, Justus A (2014). Optimization of the pulsed vacuum osmotic dehydration of cladodes of fodder palm. International Journal of Food Science and Technology 49(3):726-732. http://dx.doi.org/10.1111/ijfs.12357

Vieira GS, Pereira LM, Hubinger MD (2012). Optimization of osmotic dehydration process of guavas by response surface methodology and desirability function. International Journal of Food Science and Technology 47(1):132-140. http://dx.doi.org/10.1111/j.1365-2621.2011.02818.x

Downloads

Published

2024-09-23

How to Cite

HUERTA-VERA, K., CONTRERAS-OLIVA, A., ARÉVALO-GALARZA, M. de L., FLORES-ANDRADE, E., PÉREZ-GAGO, M. B., & USCANGA-SOSA, D. P. (2024). Factors affecting the mass transfer kinetics of osmotically dehydrated chayote (Sechium edule (Jacq.) Sw.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(3), 13507. https://doi.org/10.15835/nbha52313507

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52313507

Most read articles by the same author(s)