Investigation of resistance using STMS markers against Ascochyta blight in the chickpea varieties

Authors

  • Ibrahim Ilker OZYIGIT Marmara University, Faculty of Science, Department of Biology, Istanbul (TR)
  • Ilhan DOGAN Sakarya University of Applied Sciences, Vocational School of Health Services at Akyazi, Sakarya (TR)
  • Fatih TABANLI Marmara University, Faculty of Science, Department of Biology, Istanbul (TR)
  • Durdane MART Republic of Türkiye Ministry of Agriculture and Forestry, Cukurova Agricultural Research Institute, Adana (TR)
  • Ozcan YORGANCILAR Republic of Türkiye Ministry of Agriculture and Forestry, Transitional Zone Agricultural Research Institute, Eskisehir (TR)
  • Meltem TURKERI Republic of Türkiye Ministry of Agriculture and Forestry, Cukurova Agricultural Research Institute, Adana (TR)
  • Evren ATMACA Republic of Türkiye Ministry of Agriculture and Forestry, Transitional Zone Agricultural Research Institute, Eskisehir (TR)
  • Aysel YORGANCILAR Republic of Türkiye Ministry of Agriculture and Forestry, Transitional Zone Agricultural Research Institute, Eskisehir (TR)

DOI:

https://doi.org/10.15835/nbha52113502

Keywords:

Ascochyta blight, Ascochyta rabiei, chickpea, Didymella rabiei, molecular breeding, molecular markers

Abstract

Chickpea (Cicer arietinum L.), a prominent legume plant, is an important agricultural plant that is widely grown both in Türkiye and around the world. Ascochyta blight, caused by the fungal phytopathogen Ascochyta rabiei, is one of the major causative agents responsible for yield reductions across the spectrum of chickpea diseases. The impact of diseases varies depending on crops, countries, seasons and cropping systems, and yield loss data collected under well-defined conditions is limited. It is noteworthy that this pathogen shows significant genetic diversity in Türkiye's agricultural environment. In light of this, this study aimed to conduct a research to determine the resistant/tolerant and susceptible genotypes of 34 certificated chickpea varieties grown in different regions of Türkiye by using Sequence Tagged Microsatellite Site (STMS) markers that are related to the genes that provide resistance against Ascochyta blight. The results obtained in this study showed that the primers Ta2, Ta146 and Ts54 used as STMS markers have distinctive features in providing highly effective results in the detection of resistant/tolerant and susceptible varieties of Ascochyta blight.

References

Achari SR, Mann RC, Sharma M, Edwards J (2023). Diagnosis of Fusarium oxysporum f. sp. ciceris causing Fusarium wilt of chickpea using loop-mediated isothermal amplification (LAMP) and conventional end-point PCR. Scientific Reports 13(1):2640. https://doi.org/10.1038/s41598-023-29730-6

Acikgoz N, Karaca M, Er C, Meyveci K (1994). Expanding the production and use of cool season food legumes. In: Muehlbauer FJ, Kaiser WJ (Eds). Current Plant Science and Biotechnology in Agriculture, Springer Netherlands, pp 388-398.

Asrat A, Tana T, Fikre A (2016). Response of chickpea (Cicer arietinum L.) to rates of nitrogen and phosphorus fertilizer at Debre Zeit, Central Ethiopia. In: Korbu L, Damte T, Fikre A (Eds). Harnessing chickpea value chain for nutrition security and commercialization of smallholder agriculture in Africa, pp 169.

Barilli E, Cobos Mj, Rubiales D (2016). Clarification on host range of Didymella pinodes the causal agent of pea Ascochyta blight. Frontiers in Plant Science 7(27):592. https://doi.org/10.3389/fpls.2016.00592

Bell JC, Bound SA, Buntain M (2022). Biostimulants in agricultural and horticultural production. Horticultural Reviews 49:35-95. https://doi.org/10.1002/9781119851981.ch2

Cingilli H, Altinkut A, Akcin A (2003). Screening of Turkish chickpea (Cicer arietinum L.) genotypes for Ascochyta blight resistance using molecular markers. Biotechnology & Biotechnological Equipment 17(1):65-73. https://doi.org/10.1080/13102818.2003.10819197

Daba K, Deokar A, Banniza S, Warkentin T, Taran B (2016).QTL mapping of early flowering and resistance to Ascochyta blight in chickpea (Cicer arietinum L.). Genome 59(6):413-425. https://doi.org/10.1139/gen-2016-0036

Damte T, Ojiewo CO (2016). Current status of wilt/root rot diseases in major chickpea growing areas of Ethiopia. Archives of Phytopathology and Plant Protection 49(9-10):222-238. https://doi.org/10.1080/03235408.2016.1180925

De Camargo AC, Favero BT, Morzelle MC, Franchin M, Alvarez-Parrilla E, De La Rosa LA, Geraldi MV, Junior MRM, Shahidi F, Schwember AR (2019). Is chickpea a potential substitute for soybean? Phenolic bioactives and potential health benefits. International Journal of Molecular Sciences 20(11):2644. https://doi.org/10.3390/ijms20112644

Dogan I, Ozyigit II, Genc E, Tabanli F, Mart D, Yorgancilar O, Yorgancilar A (2023). STMS markers related to Ascochyta blight resistance in chickpea. Indian Journal of Biochemistry and Biophysics (IJBB) 60(3):196-208. https://doi.org/10.56042/ijbb.v60i3.61501

Dutech C, Enjalbert J, Fournier E, Delmotte F, Barres B, Carlier J, Tharreau D, Giraud T (2007). Challenges of microsatellite isolation in fungi. Fungal Genetical Biology 44(10):933-949. https://doi.org/10.1016/j.fgb.2007.05.003

FAOSTAT (2019). Food and agriculture organization of the United Nations Database, Food and Agriculture Organization Corporate Statistical Database, Türkiye.

Filiz E, Uras ME, Ozyigit II, Sen U, Gungor H (2018). Genetic diversity and phylogenetic analyses of Turkish rice varieties revealed by ISSR markers and chloroplast trnl-F region. Fresenius Environmental Bulletin 27(12):8351-8358.

Frenkel O, Shtienberg D, Abbo S, Sherman A (2007). The sympatric Ascochyta complex of wild Cicer judaicum and domesticated chickpea. Plant Patholology 56(3):464-471. https://doi.org/10.1111/j.1365-3059.2006.01552.x

Geistlinger J, Weising K, Winter P, Kahl G. (2000). Locus-specific microsatellite markers for the fungal chickpea pathogen Didymella rabiei (anamorph). Ascochyta rabiei. Molecular Ecology 9(11):1939-1941. https://doi.org/10.1046/j.1365-294x.2000.01092-13.x

Hocaoglu-Ozyigit A, Ucar B, Altay V, Ozyigit II (2022). Genetic diversity and phylogenetic analyses of Turkish cotton (Gossypium hirsutum L.) lines using ISSR markers and chloroplast trnL-F regions. Journal of Natural Fibers 19(5):1837-1850. https://doi.org/10.1080/15440478.2020.1788493

Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, … Chattopadhyay D (2013). A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). The Plant Journal 74(5):715-729. https://doi.org/10.1111/tpj.12173

Javaid A, Amin M, Athar MM (2014). Antifungal activity of Melia azedarach L. fruit extract against Ascochyta rabiei (Pass.) Lab. Pakistan Journal of Phytopathology 26(2):151-155.

Jenfaoui H, Uras ME, Bahri BA, Ozyigit II, Souissi T (2021). Morphological variation, genetic diversity and phylogenetic relationships of Hypericum triquetrifolium Turra populations from Tunisia. Biotechnology & Biotechnological Equipment 35(1):1505-1519. https://doi.org/10.1080/13102818.2021.1977180

Jha UC, Sharma KD, Nayyar H, Parida SK, Siddique KH (2022). Breeding and genomics interventions for developing Ascochyta blight resistant grain legumes. International Journal of Molecular Sciences 23(4):2217. https://doi.org/10.3390/ijms23042217

Kafadar FN, Ozkan A, Can C, Kar Y, Mart D, Ceyhan E (2019). Genetic and biochemical properties of Cicer spp reveal distinction between wild and cultivated chickpea genotypes. Legume Research 42(1):1-9. https://doi.org/10.18805/LR-395

Kahraman A, Ozkan Z (2015). Ascochyta blight of chickpea. Selcuk Journal of Agriculture and Food Sciences 29(2):62-66.

Kalendar R, Schulman AH (2006). IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols 1:2478-2484. https://doi.org/10.1038/nprot.2006.377

Ketnawa S, Rawdkuen S (2023). Properties of Texturized vegetable proteins from edible mushrooms by using single-screw extruder. Foods 12(6):1269. https://doi.org/10.3390/foods12061269

Khetarpaul N (2018). Total mineral content present (calcium, magnesium, potassium, phosphorus, iron, zinc, manganese, copper, and boron and nickel) in leaves of Desi and Kabuli chickpea varieties (on dry matter basis). The International Journal of Communication Systems 6(2):633- 635.

Kottapalli P, Gaur PM, Katiyar SK, Crouch JH, Buhariwalla HK, Pande S, Gali KK (2009). Mapping and validation of QTLs for resistance to an Indian isolate of Ascochyta blight pathogen in chickpea. Euphytica 165(1):79-88. https://doi.org/10.1007/s10681-008-9762-x

Kukreja S, Salaria N, Thakur K, Goutam U (2018). Fungal disease management in chickpea: current status and future prospects. In: Gehlot P, Singh J (Eds). Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore, pp 293-309. https://doi.org/10.1007/978-981-13-0393-7_17

Leo AE, Ford R, Linde CC (2015). Genetic homogeneity of a recently introduced pathogen of chickpea, Ascochyta rabiei, to Australia. Biological Invasions 17(2):609-623. https://doi.org/10.1007/s10530-014-0752-8

Madrid E, Chen W, Rajesh PN, Castro P, Millan T, Gil J (2013). Allele-specific amplification for the detection of Ascochyta blight resistance in chickpea. Euphytica 189:183-190. https://doi.org/10.1007/s10681-012-0753-6

Mart D, Can C, Ozyigit II, Turkeri M, Mart S, Yucel D (2022). The tolerance of some registered chickpea (Cicer arietinum L.) varieties against Ascochyta blight (Ascochyta rabiei) in the Eastern-Mediterranean region. Journal of Nutritional Health and Food Engineering 12(2):55-59. https://doi.org/10.15406/jnhfe.2022.12.00356

MGM (2023). Turkish State Meteorological Service, Türkiye. https://www.mgm.gov.tr/.

Milgroom MG, Peever TL (2003). Population biology of plant pathogens: the synthesis of plant disease epidemiology and population genetics. Plant Disease 87(6):608-617. https://doi.org/10.1094/PDIS.2003.87.6.608

Owati AS, Agindotan B, Pasche JS, Burrows M (2017). The detection and characterization of QoI-resistant Didymella rabiei causing Ascochyta blight of chickpea in Montana. Frontiers in Plant Science 8:1165. https://doi.org/10.3389/fpls.2017.01165

Ozkilinc H, Frenkel O, Abbo S, Shtienberg D, Sherman A, Kahraman A, Can C (2011). Aggressiveness of eight Didiymella rabiei isolates from domesticated and wild chickpea native to Turkey and Israel, a case study. European Journal of Plant Pathology 131:529-537. https://doi.org/10.1007/s10658-011-9828-9

Ozkilinc H, Thomas K, Abang M, Peever TL (2015). Population structure and reproductive mode of Didymella fabae in Syria. Plant Pathology 64(5):1110-1119. https://doi.org/10.1111/ppa.12359

Pisuttu C, Risoli S, Moncini L, Nali C, Pellegrini E, Sarrocco S (2023). Sustainable strategies to counteract mycotoxins contamination and cowpea weevil in chickpea seeds during post-harvest. Toxins 15(1):61. https://doi.org/10.3390/toxins15010061

Rodda MS, Davidson J, Javid M, Sudheesh S, Blake S, Forster JW, Kaur S (2017). Molecular breeding for Ascochyta blight resistance in lentil: Current progress and future directions. Frontiers in Plant Science 8:1136. https://doi.org/10.3389/fpls.2017.01136

Rubiales D, Fondevilla S, Chen W, Davidson J (2018). Advances in Ascochyta research. Frontiers in Plant Science 9:22. https://doi.org/10.3389/fpls.2018.00022

Sahu VK, Tiwari S, Tripathi MK, Gupta N, Tomar RS, Ahuja A, Yasin M (2020). Molecular marker validation and identification of Fusarium wilt resistant chickpea genotypes. Indian Journal of Genetics and Plant Breeding 80(2):163-172. https://doi.org/10.31742/IJGPB.80.2.6

Santra DK, Tekeoglu M, Ratnaparkhe ML, Kaiser WJ, Muehlbauer F (2000). Identification and mapping of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Science 40:1606-1612. https://doi.org/10.2135/cropsci2000.4061606x

Semagn K, Babu R, Hearne S, Olsen M (2014). Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Molecular Breeding 33:1-14. https://doi.org/10.1007/s11032-013-9917-x

Sethy NK, Choudhary S, Shokeen B, Bhatia S (2006). Identification of microsatellite markers from Cicer reticulatum: molecular variation and phylogenetic analysis. Theoretical and Applied Genetics 112(2):347-357. https://doi.org/10.1007/s00122-005-0135-8

Sharma M, Ghosh R (2016). An update on genetic resistance of chickpea to Ascochyta Blight. Agronomy 6(1):18. https://doi.org/10.3390/agronomy6010018

Simsek D, Samur D, Mutlu N (2020). Marker assisted backcross breeding for fusarium wilt (Fusarium oxysporum Schlecht. F. sp. melongenae) in eggplant. International Journal of Agricultural and Natural Sciences 13(2):91-100.

Singh M, Kumar K, Bisht Is, Dutta M, Rana MK, Rana JC, Bansal KC, Sarker A (2015). Exploitation of wild annual Cicer species for widening the gene pool of chickpea cultivars. Plant Breeding 134(2):186-192. https://doi.org/10.1111/pbr.12254

Sudupak MA, Akkaya MS, Kence A (2004). Genetic relationships among perennial and annual Cicer species growing in Turkey assessed by AFLP fingerprinting. Theoretical and Applied Genetics 108(5):937-944. https://doi.org/10.1007/s00122-003-1505-8

Tang X, Zheng Y, Liu TC, Liu J, Wang J, Lu Y, Zhou P (2022). Fragrant rapeseed oil consumption prevents blood cholesterol accumulation via promoting fecal bile excretion and reducing oxidative stress in high cholesterol diet fed rats. Journal of Functional Foods 88:104893. https://doi.org/10.1016/j.jff.2021.104893

Tekeoglu M, Rajesh P, Muehlbauer F (2002). Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theoretical and Applied Genetics 105(6-7):847-854. https://doi.org/10.1007/s00122-002-0993-2

Tivoli B, Banniza S (2007). Comparison of the epidemiology of Ascochyta blights on grain legumes. European Journal for Plant Pathology 119(1):59-76. https://doi.org/10.1007/s10658-007-9117-9

Toker C, Cagirgan MI (2004). The use of phenotypic correlations and factor analysis in determining characters for grain yield selection in chickpea (Cicer arietinum L.). Hereditas 140(3):226-228. https://doi.org/10.1111/j.1601-5223.2004.01781.x

TUIK (2023). Statistical Data. http://www.tuik.gov.tr/yillik/Ist_gostergeler.pdf (in Turkish).

Vandana UK, Barlaskar NH, Kalita R, Laskar IH, Mazumder PB (2020). The vital foliar diseases of Cicer arietinum L. (chickpea): science, epidemiology, and management. In: Singh B, Singh G, Kumar K, Nayak S, Srinivasa N (Eds). Management of Fungal Pathogens in Pulses. Fungal Biology. Springer, Cham. pp 169-190. https://doi.org/10.1007/978-3-030-35947-8_10

Varol IS, Kardes YM, Irik HA, Kirnak H, Kaplan M (2020). Supplementary irrigations at different physiological growth stages of chickpea (Cicer arietinum L.) change grain nutritional composition. Food Chemistry 303:125402. https://doi.org/10.1016/j.foodchem.2019.125402

Vasishtha H, Srivastava RP, Verma P (2014). Effect of dehusking and cooking on protein and dietary fibre of different genotypes of desi, kabuli and green type chickpeas (Cicer arietinum). Journal of Food Science and Technology 51(12):4090-4095. https://doi.org/10.1007/s13197-012-0909-3

Vishwakarma G, Sanyal RP, Saini A, Sahu PK, Patel RRS, Sharma D, Tiwari R, Das BK (2019). GLADS: A gel-less approach for detection of STMS markers in wheat and rice. PloS One 14(11). https://doi.org/10.1371/journal.pone.0224572

Yadav P, Chandra R, Pareek N, Raverkar KP (2018). Screening of multi-trait mesorhizobium isolates for plant growth promotion and nitrogen fixation in chickpea (Cicer arietinum L.). International Journal of Current Microbiology and Applied 7(8):2592-2599. https://doi.org/10.20546/ijcmas.2018.708.266

Yildirim A, Kahraman A, Muehlbauer Fj, Tanyolaci B (2018). Identification of new QTL conferring resistance to anthracnose (Ascochyta rabiei) in a ril population of chickpea. Turkish Journal of Field Crops 23(2):93-99. https://doi.org/10.17557/tjfc.467465

Yorgancilar O, Bilir O, Cakir S, Atmaca E (2019). Testing the resistance of chickpea lines and varieties grown in Anatolian Agricultural Research Institute against Ascochyta blight using molecular marker methods. Türkiye VIII. Field Crops Congress, 19-22 October, Hatay, Türkiye. (in Turkish).

Zhang C, Chen W, Sankaran S (2019). High-throughput field phenotyping of Ascochyta blight disease severity in chickpea. Crop Protection 125:104885. https://doi.org/10.1016/j.cropro.2019.104885

Downloads

Published

2024-03-11

How to Cite

OZYIGIT, I. I., DOGAN, I., TABANLI, F., MART, D., YORGANCILAR, O., TURKERI, M., ATMACA, E., & YORGANCILAR, A. (2024). Investigation of resistance using STMS markers against Ascochyta blight in the chickpea varieties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), 13502. https://doi.org/10.15835/nbha52113502

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52113502