Forthcoming

Morphological, biochemical and nutritional variations in a Mexican purslane (Portulaca oleracea L.) variety exposed to salt stress during the vegetative stage

Authors

  • Brenda K. GUEVARA-OLIVAR Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Aragón, Av. Hacienda de Rancho Seco S/N, Plazas de Aragón, Nezahualcóyotl 57171; Colegio de Postgraduados Campus Montecillo, Carretera México–Texcoco km 36.5, Montecillo, Texcoco 56264 (MX)
  • Fernando C. GÓMEZ-MERINO Colegio de Postgraduados Campus Montecillo, Carretera México–Texcoco km 36.5, Montecillo, Texcoco 56264 (MX)
  • Lucero del Mar RUÍZ-POSADAS Colegio de Postgraduados Campus Montecillo, Carretera México–Texcoco km 36.5, Montecillo, Texcoco 56264 (MX)
  • Yolanda L. FERNÁNDEZ-PAVÍA Colegio de Postgraduados Campus Montecillo, Carretera México–Texcoco km 36.5, Montecillo, Texcoco 56264 (MX)
  • José A. ESCALANTE-ESTRADA Colegio de Postgraduados Campus Montecillo, Carretera México–Texcoco km 36.5, Montecillo, Texcoco 56264 (MX)
  • Libia I. TREJO-TÉLLEZ Colegio de Postgraduados Campus Montecillo, Carretera México–Texcoco km 36.5, Montecillo, Texcoco 56264 (MX)

DOI:

https://doi.org/10.15835/nbha52213434

Keywords:

abiotic stress, halophytes, Portulacaceae, salinity, stress response

Abstract

Salt stress limits productivity of crop plants, and differential responses may be observed among genotypes. Herein we analyzed the effects of saline stress induced by the application of different concentrations of sodium chloride (0.00, 0.25, 0.50, 0.75, and 1.00 M NaCl) in a local Mexican variety of purslane (Portulaca oleracea L.) named ‘Atlapulco’ in vegetative stage. The NaCl concentrations were applied in the Hoagland nutrient solution used in irrigation for 14 days under greenhouse conditions, using perlite as a substrate. Analysis of variance and comparison of means were carried out with the data obtained. NaCl concentrations from 0.50 M reduced canopy coverage 36.8% and stem diameter by almost 21%, while all NaCl doses reduced the leaf area by 28.2%, on average, as compared to the control. Dry stem biomass and chlorophyll b were reduced by the saline gradient. Secondary stems and root length increased with 1.00 M by 23 and 29%, respectively. Proline concentration both in leaves and stems increased by 223.9 and 138%, respectively, when applying 1.00 M NaCl, compared to the control. Applying 0.75 and 1.00 M NaCl reduced N concentrations by 47 and 28.8% in leaf tissues, respectively, compared to the control. The concentrations of P and K in leaves, and K in roots also decreased with the saline treatments, while those of Ca and Mg were not affected in any of the analyzed tissues. The highest concentrations of Na in leaves were observed in doses 0.50 and 0.75 M NaCl, surpassing the control by 67.5 and 73.1%, respectively. The findings reported herein are very useful to propose programs for the recovery of saline soils in the region and design environmental policies aimed at mitigating the effects of climate change on food production.

References

Alam MA, Juraimi AS, Rafii MY, Hamid AA, Aslani F (2014). Screening of purslane (Portulaca oleracea L.) accessions for high salt tolerance. The Scientific World Journal 627916. https://doi.org/10.1155/2014/627916

Alam MA, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Alam MZ (2015). Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use. Food Chemistry 169:439-447. https://doi.org/10.1016/j.foodchem.2014.08.019

Bailey RW (1958). The reaction of pentoses with anthrone. Biochemical Journal 68:669-672. https://doi.org/10.1042/bj0680669

Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39:205-207. https://doi.org/10.1007/BF00018060

Bebre I, Marques I, Annighöfer P (2022). Biomass allocation and leaf morphology of saplings grown under various conditions of light availability and competition types. Plants 11(3):305. https://doi.org/10.3390/plants11030305

Borsai O, Al Hassan M, Boscaiu M, Sestras RE, Vicente O (2018). The genus Portulaca as a suitable model to study the mechanisms of plant tolerance to drought and salinity. The EuroBiotech Journal 2(2):104-113. https://doi.org/10.2478/ebtj-2018-0014

Brady KU, Kruckeberg AR, Bradshaw HD (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics 36:243-266. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730

Bremner JM (1965). Total nitrogen. In: Black CA (Ed). Methods of soil analysis. Part 2. Agronomy 9. Am. Soc Agron. Madison, WI, USA, pp 1149-1178.

Brumfiel EM (2009). El estudio de la clase común: El asentamiento de Xaltocan durante el Posclásico en la cuenca de México [The Study of the Common Class: The Postclassic Settlement of Xaltocan in the Basin of Mexico]. Cuicuilco 16(47):59-86.

Busoms S, Teres J, Huang XY, Bomblies K, Danku J, Douglas A, Weigel D, Poschenrieder C, Salt DE (2015). Salinity is an agent of divergent selection driving local adaptation of Arabidopsis to coastal habitats. Plant Physiology 168:915-929. https://doi.org/10.1104/pp.15.00427

Chen G, Amoanimaa-Dede H, Zeng F, Deng F, Xu S, Chen ZH (2022). Stomatal regulation and adaptation to salinity in glycophytes and halophytes. In: Shabala S (Ed). Advances in Botanical Research. Academic Press, 103:1-42. https://doi.org/10.1016/bs.abr.2022.02.008

De Kroon H, Huber H, Stuefer JF, Van Groenendael JM (2005). A modular concept of phenotypic plasticity in plants. New Phytologist 166(1):73-82. https://doi.org/10.1111/j.1469-8137.2004.01310.x

De Swaef T, Steppe K (2010). Linking stem diameter variations to sap flow, turgor and water potential in tomato. Functional Plant Biology 37(5):429-438. https://doi.org/10.1071/fp09233

Díaz-López L, Gimeno V, Lidón V, Simón I, Martínez V, García-Sánchez F (2012). The tolerance of Jatropha curcas seedlings to NaCl: An ecophysiological analysis. Plant Physiology and Biochemistry 54:34-42. https://doi.org/10.1016/j.plaphy.2012.02.005

Elkelish AA, Soliman MH, Alhaithloul HA, El-Esawi MA (2019). Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiology Biochemistry 137:144-153. https://doi.org/10.1016/j.plaphy.2019.02.004

Ferrari RC, Cruz BC, Gastaldi VD, Storl T, Ferrari EC, Boxall SF, Hartwell J, Freschi L (2020). Exploring C4–CAM plasticity within the Portulaca oleracea complex. Scientific Reports 10:14237. https://doi.org/10.1038/s41598-020-71012-y

Ferrari RC, Kawabata AB, Ferreira SS, Hartwell J, Freschi L (2022). A matter of time: regulatory events behind the synchronization of C4 and crassulacean acid metabolism in Portulaca oleracea. Journal of Experimental Botany 73(14):4867-4885. https://doi.org/10.1093/jxb/erac163

Flowers TJ, Colmer TD (2008). Salinity tolerance in halophytes. The New Phytologist 179(4):945-63. https://doi.org/10.1111/j.1469-8137.2008.02531.x

Franco JA, Cros V, Vicente MJ, Martínez-Sánchez JJ (2011). Effects of salinity on the germination, growth, and nitrate contents of purslane (Portulaca oleracea L.) cultivated under different climatic conditions. Journal of Horticultural Science and Biotechnology 86(1):1-6. https://doi.org/10.1080/14620316.2011.11512716

Germain RM, Gilbert B (2014). Hidden responses to environmental variation: maternal effects reveal species niche dimensions. Ecology Letters 17:662-669. https://doi.org/10.1111/ele.12267 PMID:24602193

Gil R, Lull C, Boscaiu M, Bautista I, Lidón A, Vicente O (2011). Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2):9-17. https://doi.org/10.15835/nbha3927176

Gill SS, Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909-930. https://doi.org/10.1016/j.plaphy.2010.08.016

González-Orenga S, Llinares JV, Al Hassan M, Fita A, Collado F, Lisón P, Vicente O, Boscaiu M (2020). Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses. Plant and Soil 449: 267-284. https://doi.org/10.1007/s11104-020-04486-4

Harborne JB (1973) Phytochemical methods. A guide to modern techniques of plant analysis. Chapman & Hall. London, England, pp 278.

Hasegawa PM, Bressan RA (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51:463-499. https://doi.org/10.1146/annurev.arplant.51.1.463

Horie T, Kaneko T, Sugimoto G, Sasano S, Panda SK, Shibasaka M, Katsuhara M (2011). Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Plant and Cell Physiology 52(4):663-675. https://doi.org/10.1093/pcp/pcr027

Hu YC, Schmidhalter U (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science 168:541-549. https://doi.org/10.1002/jpln.200420516

Hurtado SA, Pereira SDF, Ceballos AN, Ocampo J, Horst BC.2017. Proline and ions accumulation in four Passiflora species under water-saline stress. Comunicata Scientiae 8(4):570-580. https://doi.org/10.14295/CS.v8i4.2323

Jin R, Shi H, Han C, Zhong B, Wang Q, Chan Z (2015). Physiological changes of purslane (Portulaca oleracea L.) after progressive drought stress and rehydration. Scientia Horticulturae 194:215-221. https://doi.org/10.1016/j.scienta.2015.08.023

Jin R, Wang Y, Liu R, Gou J, Chan Z (2016). Physiological and metabolic changes of purslane (Portulaca oleracea L.) in response to drought, heat, and combined stresses. Frontiers in Plant Science 6:1123. https://doi.org/10.3389/fpls.2015.01123

Kafi M, Rahimi Z (2011). Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Science and Plant Nutrition 57:341-347 https://doi.org/10.1080/00380768.2011.567398

Kong Y, Rozema E, Zheng Y (2014). The effects of NaCl on calcium-deficiency disorder vary with symptom development stage and cultivar in hydroponic Portulaca oleracea L. Canadian Journal of Plant Science 94(7):1195-1201. https://doi.org/10.4141/CJPS2013-390

Lamers J, Van T, Testerink C (2020). How plants sense and respond to stressful environments. Plant Physiology 182(4):1624–1635. https://doi.org/10.1104/pp.19.01464

Liang W, Cui W, Ma X, Wang G, Huang Z (2014). Function of wheat Ta-UnP gene in enhancing salt tolerance in transgenic Arabidopsis and rice. Biochemical and Biophysical Research Communications 450(1):794-801. https://doi.org/10.1016/j.bbrc.2014.06.055

Liang W, Ma X, Wan P, Liu L (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications 495(1):286-291. https://doi.org/10.1016/j.bbrc.2017.11.043

Lim YY, Quah EPL (2007). Antioxidant properties of different cultivars of Portulaca oleracea. Food Chemistry 103:734-740. https://doi.org/10.1016/j.foodchem.2006.09.025

Mansour MM, Ali EF (2017). Evaluation of proline functions in saline conditions. Phytochemistry 140:52-68. https://doi.org/10.1016/j.phytochem.2017.04.016

McClung de Tapia E, Martínez YD, Ibarra ME, Adriano MCC (2014). Los orígenes prehispánicos de una tradición alimentaria en la Cuenca de México [The pre-Hispanic origins of a food tradition in the Basin of Mexico]. Anales de Antropología 48(1):97-121. https://doi.org/10.1016/S0185-1225(14)70491-6

Moreno-Villena JJ, Zhou H, Gilman IS, Tausta SL, Cheung CYM, Edwards EJ (2022). Spatial resolution of an integrated C4+CAM photosynthetic metabolism. Science Advances 8(31):eabn2349. https://doi.org/10.1126/sciadv.abn2349

Munns R, James RA, Läuchli A (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57(5):1025-1043. https://doi.org/10.1093/jxb/erj100

Parida AK, Veerabathini SK, Kumari A, Agarwal PK (2016). Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Frontiers in Plant Science 7:351. https://doi.org/10.3389/fpls.2016.00351

Rahdari P, Hosseini SM (2012). Effect of different levels of drought stress (PEG 6000 concentrations) on seed germination and inorganic elements content in purslane (Portulaca oleracea L.) leaves. Journal of Stress Physiology and Biochemistry 8(2):51-61.

Rahdari P, Tavakoli S, Hosseini SM (2012). Studying of salinity stress effect on germination, proline, sugar protein, lipid and chlorophyll content in purslane (Portulaca oleracea L.) leaves. Journal of Stress Physiology and Biochemistry 8(1):182-193.

Rosales MA, Franco-Navarro JD, Peinado-Torrubia P, Díaz-Rueda P, Álvarez R, Colmenero-Flores JM (2020). Chloride improves nitrate utilization and NUE in plants. Frontiers in Plant Science 11:442. https://doi.org/10.3389/fpls.2020.00442

Sarmiento-Franco LA, Barrera-Ramos O, Carrasco-Espinoza W, Bautista-Ortega J (2016). Portulaca oleracea, a versatile plant resource waiting to be used in the tropics. Agroproductividad 9(9):61-66.

SAS Institute Inc (2002). SAS® system for Microsoft® Windows® v. 9.00. NC. USA.

Sdouga D, Amor FB, Ghribi S, Kabtni S, Tebini M, Branca F, Trifi-Farah N, Marghali S (2019). An insight from tolerance to salinity stress in halophyte Portulaca oleracea L.: Physio-morphological, biochemical, and molecular responses. Ecotoxicology and Environmental Safety 172:45-52. https://doi.org/10.1016/j.ecoenv.2018.12.082

Shabala S, Wu HH, Bose J (2015). Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis. Plant Science 241:109–119. https://doi.org/10.1016/j.plantsci.2015.10.003

Shin YK, Bhandari SR and Lee JG (2021). Monitoring of salinity, temperature, and drought stress in grafted watermelon seedlings using chlorophyll fluorescence. Frontiers in Plant Science 12:786309. https://doi.org/10.3389/fpls.2021.786309

Silva VNB, da Silva TLC, Ferreira TMM, Neto CR, Leão AP, Ribeiro JAA, Abdelnur PV, Valadares LF, Sousa CAF, Souza Jr MT (2023). Multi-omics analysis of young Portulaca oleracea L. plants’ responses to high NaCl doses reveals insights into pathways and genes responsive to salinity stress in this halophyte species. Phenomics 3:1-21. https://doi.org/10.1007/s43657-022-00061-2

Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany 115:433-447. https://doi.org/10.1093/aob/mcu239

Teixeira M, Carvalho IS (2009). Effects of salt stress on purslane (Portulaca oleracea) nutrition. Annals of Applied Biology 154:77-86. https://doi.org/10.1111/j.1744-7348.2008.00272.x

Uddin K, Shukor JA, Anwar F, Hossain A, Alam A (2012). Effect of salinity on proximate mineral composition of purslane (Portulaca oleracea L.). Australian Journal of Crop Science 6(12):1732-1736.

Ullrich WR (2002). Salinity and nitrogen nutrition. In: Läuchli, A, Lüttge U (Eds). Salinity: Environment-Plants-Molecules. Springer, Dordrecht, pp 229-248. https://doi.org/10.1007/0-306-48155-3_11

Vázquez-Alonso MT, Bye R, López-Mata L., Pulido-Salas MTP, McClung de TE, Koch SD (2014). Etnobotánica de la cultura teotihuacana [Ethnobotany of the Teotihuacan culture]. Botanical Sciences 92(4):563-574. https://doi.org/10.17129/botsci.118

Wakeel A (2013). Potassium-sodium interactions in soil and plant under saline-sodic conditions. Journal of Plant Nutrition and Soil Science 176:344–354. https://doi.org/10.1002/jpln.201200417

Wang S, Zhao Z, Ge S, Peng B, Zhang K, Hu M, Mai W, Tian C (2021). Root morphology and rhizosphere characteristics are related to salt tolerance of Suaeda salsa and Beta vulgaris L. Frontiers in Plant Science 12:677767. https://doi.org/10.3389/fpls.2021.677767

Yang Z, Liu C, Xiang L, Zheng Y (2009). Phenolic alkaloids as a new class of antioxidants in Portulaca oleracea. Phytotherapy Research 23(7):1032–1035. https://doi.org/10.1002/ptr.2742

Yazici I, Türkan I, Sekmen AH, Demiral T (2007). Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental Botany 61(1):49-57. https://doi.org/10.1016/j.envexpbot.2007.02.010

Zaman S, Hu S, Alam MA, Du H, Che S (2019). The accumulation of fatty acids in different organs of purslane under salt stress. Scientia Horticulturae 250:236-242. https://doi.org/10.1016/j.scienta.2019.02.051

Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences 22(9):4609. https://doi.org/10.3390/ijms22094609

Downloads

Published

2024-05-13

How to Cite

GUEVARA-OLIVAR, B. K., GÓMEZ-MERINO, F. C., RUÍZ-POSADAS, L. del M., FERNÁNDEZ-PAVÍA, Y. L., ESCALANTE-ESTRADA, J. A., & TREJO-TÉLLEZ, L. I. (2024). Morphological, biochemical and nutritional variations in a Mexican purslane (Portulaca oleracea L.) variety exposed to salt stress during the vegetative stage . Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(2), 13434. https://doi.org/10.15835/nbha52213434

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52213434

Most read articles by the same author(s)