Effect of root imbibition with selenium and iodine on antioxidant compounds in tomato (Solanum lycopersicum L.) crop

Authors

  • Fernando MEJÍA-RAMÍREZ Universidad Autónoma Agraria Antonio Narro, Department of Horticulture, 1923 Antonio Narro Av, Saltillo 25315 (MX)
  • Maria I. PÉREZ-LEÓN Universidad Autónoma Agraria Antonio Narro, Department of Horticulture, 1923 Antonio Narro Av, Saltillo 25315 (MX)
  • Adalberto BENAVIDES-MENDOZA Universidad Autónoma Agraria Antonio Narro, Department of Horticulture, 1923 Antonio Narro Av, Saltillo 25315 (MX)
  • Susana GONZÁLEZ-MORALES CONAHCYT-Universidad Autónoma Agraria Antonio Narro, Department of Horticulture, 1923 Antonio Narro Av, Saltillo 25315 (MX)
  • Antonio JUÁREZ-MALDONADO Universidad Autónoma Agraria Antonio Narro, Department of Botany, 1923 Antonio Narro Av, Saltillo 2531 (MX)
  • América Berenice MORALES-DÍAZ Centro de Investigación y de Estudios Avanzados (CINVESTAV), Robotics and Advanced Manufacturing, Ramos Arizpe 25900 (MX)
  • Francisco M. LARA-VIVEROS Centro de Investigación en Química Aplicada (CIQA), Department of Biosciences and Agrotechnology, Saltillo 25294 (MX)
  • Álvaro MORELOS-MORENO CONAHCYT-Universidad Autónoma Agraria Antonio Narro, Department of Horticulture, 1923 Antonio Narro Av, Saltillo 25315 (MX)

DOI:

https://doi.org/10.15835/nbha51413247

Keywords:

Antioxidant, KIO3, Na2SeO3, ROS, secondary metabolites

Abstract

The use of trace elements such as iodine and selenium in agriculture is gaining great importance due to the benefits in plants before different types of biotic or abiotic stress. This research aimed to evaluate the seedling root priming with Na2SeO3 (0, 0,5, 1, 2, 3 mg L-1) and KIO3 (0, 100, 150, 200, 250 mg L-1) on the antioxidant compounds of tomato (Solanum lycopersicum L.) fruits and leaves. The crop was established under greenhouse conditions in 10-L polyethylene containers containing peat moss and perlite 1:1 (v/v), in a randomized complete block experimental design with a 52 factorial arrangement. In the fruits, the Na2SeO3 influenced the GHS, flavonoids, lycopene and β-carotene contents, while the KIO3 influenced the GHS, vitamin C and lycopene contents. The KIO3-Na2SeO3 interactions affected the GSH, phenols, flavonoids, lycopene and β-carotene contents in fruits. In the leaves the GHS content increased with the Na2SeO3, while the GSH, flavonoids, and chlorophyll contents increased with the KIO3 factor and KIO3-Na2SeO3 interactions. The evaluated enzymes in fruits and leaves decreased with the both the KIO3 and Na2SeO3 concentrations. The Na2SeO3 influenced the hydrophilic compounds by ABTS and DPPH, while the KIO3 influenced the hydrophilic compounds by ABTS. In the leaves, the KIO3 influenced the lipophilic compounds by ABTS. The KIO3-Na2SeO3 interactions influenced the hydrophilic compounds by ABTS in both the fruits and leaves. Seedling root imbibition in KIO3 and Na2SeO3 is a method that implemented in the tomato crop presents interesting aspects in the increase of the antioxidant capacity and the non-enzymatic compounds, such as vitamin C, phenols, flavonoids and GSH contents. However, this method presented an inhibition in the antioxidant enzymes.

References

Abedi S, Iranbakhsh A, Oraghi Ardebili Z, Ebadi M (2021). Nitric oxide and selenium nanoparticles confer changes in growth, metabolism, antioxidant machinery, gene expression, and flowering in chicory (Cichorium intybus L.): potential benefits and risk assessment. Environmental Science and Pollution Research 28:3136-3148. https://doi.org/10.1007/s11356-020-10706-2

Alsamadany H, Alharby HF, Al-Zahrani HS, Kuşvuran A, Kuşvuran S, Rady MM (2023). Selenium fortification stimulates antioxidant- and enzyme gene expression-related defense mechanisms in response to saline stress in Cucurbita pepo. Scientia Horticulturae 312:111886. https://doi.org/10.1016/j.scienta.2023.111886

Andrejiová A, Hegedusova A, Mezeyova I (2016). Effect of genotype and selenium biofortification on content of important bioactive substances in tomato (Lycopersicon esculentum mill). Journal of the Science of Food and Agriculture 4:8-18.

Arvouet-Grand A, Vennat B, Pourrat A, Legret P (1994). [Standardization of propolis extract and identification of principal constituents]. Journal de Pharmacie de Belgique 49:462-468.

Berni R, Luyckx M, Xu X. Legay S, Sergeant K, Hausman JF, … Guerriero G (2019). Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany 161:98-106. https://doi.org/10.1016/j.envexpbot.2018.10.017

Brand-Williams W, Cuvelier ME, Berset C (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28:25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Cunha MLO, Oliveira LCA, de Silva VM, Montanha GS, dos Reis AR (2022). Selenium increases photosynthetic capacity, daidzein biosynthesis, nodulation and yield of peanuts plants (Arachis hypogaea L.). Plant Physiology and Biochemistry 190:231-239. https://doi.org/10.1016/j.plaphy.2022.08.006

da Cruz Ferreira RL, de Mello Prado R, de Souza Junior JP, Gratão PL, Tezotto T, Cruz FJR (2020). Oxidative stress, nutritional disorders, and gas exchange in lettuce plants subjected to two selenium sources. Journal of Soil Science and Plant Nutrition 20:1215-1228. https://doi.org/10.1007/s42729-020-00206-0

Dall’Acqua S, Ertani A, Pilon-Smits EAH, Fabrega-Prats M, Schiavon M 2019. Selenium biofortification differentially affects sulfur metabolism and accumulation of phytochemicals in two rocket species (Eruca sativa Mill. and Diplotaxis tenuifolia) grown in hydroponics. Plants 8:68. https://doi.org/10.3390/plants8030068

de Mello Prado R (2021). Introduction to Plant Nutrition. Mineral Nutrition of Tropical Plants. Springer pp 1-38. https://doi.org/10.1007/978-3-030-71262-4_1

Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32:93-101. https://doi.org/10.1093/jxb/32.1.93

Dima SO, Neamțu C, Desliu-Avram M, Ghiurea M, Capra L, Radu E, ... Oancea F (2020). Plant biostimulant effects of baker’s yeast vinasse and selenium on tomatoes through foliar fertilization. Agronomy 10:133. https://doi.org/10.3390/agronomy10010133

El-Badri AM, Hashem AM, Batool M, Sherif A, Nishawy E, Ayaad M, … Zhou G (2022). Comparative efficacy of bio-selenium nanoparticles and sodium selenite on morpho-physiochemical attributes under normal and salt stress conditions, besides selenium detoxification pathways in Brassica napus L. Journal of Nanobiotechnology 20:1-23. https://doi.org/10.1186/s12951-022-01370-4

Flohé L, Günzler WA (1984). Assays of glutathione peroxidase, in: Methods in Enzymology, Oxygen Radicals in Biological Systems. Academic Press, pp 114-120. https://doi.org/10.1016/S0076-6879(84)05015-1

Golubkina N, Kekina H, Caruso G (2018). Yield, quality and antioxidant properties of Indian mustard (Brassica juncea L.) in response to foliar biofortification with selenium and iodine. Plants 7:80. https://doi.org/10.3390/plants7040080

Gullner G, Zechmann B, Künstler A, Király L (2017). The signaling roles of glutathione in plant disease resistance, In: Glutathione in Plant Growth, Development, and Stress Tolerance. Springer International Publishing, Cham, pp 331-357. https://doi.org/10.1007/978-3-319-66682-2_15

Halka M, Smoleń S, Ledwożyw-Smoleń I, Sady W (2019). Iodosalicylates and iodobenzoates supplied to tomato plants affect the antioxidative and sugar metabolism differently than potassium iodide. Folia Horticulturae 31:385-400. https://doi.org/10.2478/fhort-2019-0031

Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Mahmud JA, … Fujita M (2020). Selenium in plants: Boon or bane? Environmental and Experimental Botany 178:104170. https://doi.org/10.1016/j.envexpbot.2020.104170

Hasanuzzaman M, Hossain MA, Fujita M (2010). Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. Journal of Plant Sciences 5:354-375. https://doi.org/10.3923/jps.2010.354.375

Huang H, Ullah F, Zhou DX, Yi M, Zhao Y (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Sciences 10. https://doi.org/10.3389/fpls.2019.00800

Huang K, Lin L, Liao M (2018). Effects of different selenium concentrations on photosynthetic pigment contents of Solanum nigrum. IOP Conference Series: Earth and Environmental Science 199:032026. https://doi.org/10.1088/1755-1315/199/3/032026

Hussain S, Hussain S, Khaliq A, Ali S, Khan I (2019). Physiological, biochemical, and molecular aspects of seed priming. In: Priming Pretreatment of Seeds and Seedlings 43-62. https://doi.org/10.1007/978-981-13-8625-1_3

Ishtiaq M, Mazhar MW, Maqbool M, Hussain T, Hussain SA, Casini R … Elansary HO (2023). Seed priming with the selenium nanoparticles maintains the redox status in the water stressed tomato plants by modulating the antioxidant defense enzymes. Plants 12:1556. https://doi.org/10.3390/plants12071556

Kathpalia R, Bhatla SC (2018). Plant mineral nutrition. In: Plant Physiology, Development and Metabolism 37-81. https://doi.org/10.1007/978-981-13-2023-1_2

Khalofah A, Migdadi H, El-Harty E (2021). Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa willd) to exogenous selenium application. Plants 10:719. https://doi.org/10.3390/plants10040719

Krzepiłko A, Kościk B, Skowrońska M, Kuśmierz S, Walczak J, Prażak R (2023). Quality of rye plants (Secale cereale) as affected by agronomic biofortification with iodine. Plants 12. https://doi.org/10.3390/plants12010100

Li R, Li DW, Liu HP, Hong CL, Song MY, Dai ZX, … Weng HX (2017a). Enhancing iodine content and fruit quality of pepper (Capsicum annuum L.) through biofortification. Scientia Horticulturae 214:165-173. https://doi.org/10.1016/j.scienta.2016.11.030

Li R, Liu HP, Hong CL, Dai ZX, Liu JW, Zhou J, … Weng HX (2017b). Iodide and iodate effects on the growth and fruit quality of strawberry. Journal of the Science of Food and Agriculture 97:230-235. https://doi.org/10.1002/jsfa.7719

Medrano Macías J, López Caltzontzit MG, Rivas Martínez EN, Narváez Ortiz WA, Benavides Mendoza A, Martínez Lagunes P (2021). Enhancement to salt stress tolerance in strawberry plants by iodine products application. Agronomy 11:602. https://doi.org/10.3390/agronomy11030602

Medrano-Macías J, Leija-Martínez P, González-Morales S, Juárez-Maldonado A, Benavides-Mendoza A (2016). Use of iodine to biofortify and promote growth and stress tolerance in crops. Frontiers in Plant Sciences 7.

Mittler R (2017). ROS are good. Trends in Plant Sciences 22:11-19. https://doi.org/10.1016/j.tplants.2016.08.002

Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004). Reactive oxygen gene network of plants. Trends in Plant Sciences 9:490-498. https://doi.org/10.1016/j.tplants.2004.08.009

Munira S, Hossain MM, Zakaria M, Ahmed JU, Islam MM (2015). Evaluation of potato varieties against salinity stress in Bangladesh. International Journal of Plant Soil Science 73-81. https://doi.org/10.9734/IJPSS/2015/15879

Nagata M, Yamashita I (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi 39:925-928. https://doi.org/10.3136/nskkk1962.39.925

Nakano Y, Asada K (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiology 28:131-140. https://doi.org/10.1093/oxfordjournals.pcp.a077268

Padayatty S, Daruwala R, Wang Y, Eck P, Song J, Koh W, Levine M (2001). Vitamin C: From molecular mechanisms to optimum intake. In: Cadenzas E, Packer l (Eds). Handbook of Antioxidants. Second edition. CRC press. Washington DC, USA, pp 117-146.

Puccinelli M, Landi M, Maggini R, Pardossi A, Incrocci, L (2021). Iodine biofortification of sweet basil and lettuce grown in two hydroponic systems. Scientia Horticulturae 276:109783. https://doi.org/10.1016/j.scienta.2020.109783

Rady M, Semida W, Ali T, Shaaban A (2020). Foliage applied selenium improves photosynthetic efficiency, antioxidant potential and wheat productivity under drought stress. International Journal of Agriculture and Biology 24. https://doi.org/10.17957/IJAB/15.1562

Rady MM, Belal HEE, Gadallah FM, Semida WM (2020). Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae 266:109290. https://doi.org/10.1016/j.scienta.2020.109290

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26:1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Revelou PK, Xagoraris M, Kokotou MG, Constantinou-Kokotou V (2022). Cruciferous vegetables as functional foods: effects of selenium biofortification. International Journal of Vegetable Science 28:191-210. https://doi.org/10.1080/19315260.2021.1957052

Sabatino L, La Bella S, Ntatsi G, Iapichino G, D’Anna F, De Pasquale C, … Rouphael Y (2021). Selenium biofortification and grafting modulate plant performance and functional features of cherry tomato grown in a soilless system. Scientia Horticulturae 285:110095. https://doi.org/10.1016/j.scienta.2021.110095

Saeedi M, Soltani F, Babalar M, Izadpanah F, Wiesner-Reinhold M, Baldermann S (2021). Selenium fortification alters the growth, antioxidant characteristics and secondary metabolite profiles of cauliflower (Brassica oleracea var. Botrytis) cultivars in hydroponic culture. Plants 10:1537. https://doi.org/10.3390/plants10081537

Sali A, Zeka D, Fetahu S, Rusinovci, I, Kaul HP (2018). Selenium supply affects chlorophyll concentration and biomass production of maize. Food Environment 69:249-255. https://doi.org/10.2478/boku-2018-0021

Sarrou E, Siomos AS, Riccadona S, Aktsoglou DC, Tsouvaltzis P, Angeli A, ... Martens S (2019). Improvement of sea fennel (Crithmum maritimum L.) nutritional value through iodine biofortification in a hydroponic floating system. Food Chemicals 296:150-159. https://doi.org/10.1016/j.foodchem.2019.05.190

Schiavon M, Pilon-Smits EAH (2017). The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology. New Phytology 213:1582-1596. https://doi.org/10.1111/nph.14378

Smoleń S, Kowalska I, Kováčik P, Halka M, Sady W (2019). Biofortification of six varieties of lettuce (Lactuca sativa L.) with iodine and selenium in combination with the application of salicylic acid. Frontiers in Plant Sciences 10. https://doi.org/10.3389/fpls.2019.00143

Smoleń S, Wierzbińska J, Sady W, Kołton A, Wiszniewska A, Liszka-Skoczylas M (2015). Iodine biofortification with additional application of salicylic acid affects yield and selected parameters of chemical composition of tomato fruits (Solanum lycopersicum L.). Scientia Horticulturae 188:89-96. https://doi.org/10.1016/j.scienta.2015.03.023

Steiner AA (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15:134-154. https://doi.org/10.1007/BF01347224

Sykłowska-Baranek K, Pietrosiuk A, Naliwajski MR, Kawiak A, Jeziorek M, Wyderska S, … Chinou I (2012). Effect of l-phenylalanine on PAL activity and production of naphthoquinone pigments in suspension cultures of Arnebia euchroma (Royle) Johnst. Vitro Cellular & Developmental Biology - Plant 48:555-564. https://doi.org/10.1007/s11627-012-9443-2

Trippe RC, Pilon-Smits EAH (2021). Selenium transport and metabolism in plants: Phytoremediation and biofortification implications. Journal of Hazardous Materials 404:124178. https://doi.org/10.1016/j.jhazmat.2020.124178

USDA (2017). Index of official visual aids. Retrieved 2023 March 19 from: https://www.ams.usda.gov/sites/default/files/media/Official%20Inventory%20of%20FV%20Inspection%20Aids.pdf

White PJ (2018). Selenium metabolism in plants. Biochimica et Biophysica Acta (BBA) - General Subjects. Selenium research in biochemistry and biophysics – 200-year anniversary issue 1862:2333-2342. https://doi.org/10.1016/j.bbagen.2018.05.006

Xue T, Hartikainen H, Piironen V (2001). Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237:55-61. https://doi.org/10.1023/A:1013369804867

Yu Z, Dahlgren RA (2000). Evaluation of methods for measuring polyphenols in conifer foliage. Journal of Chemical Ecology 26:2119-2140. https://doi.org/10.1023/A:1005568416040

Zechmann B (2020). Subcellular roles of glutathione in mediating plant defense during biotic stress. Plants 9:1067. https://doi.org/10.3390/plants9091067

Zhang S, Zhu H, Cen H, Qian W, Wang Y, Ren M, Cheng Y (2023). Effects of various forms of selenium biofortification on photosynthesis, secondary metabolites, quality, and lignin deposition in alfalfa (Medicago sativa L.). Field Crops Research 292:108801. https://doi.org/10.1016/j.fcr.2022.108801

Zhang Y, de Stefano R, Robine M, Butelli E, Bulling K, Hill L, … Schoonbeek H (2015). Different reactive oxygen species scavenging properties of flavonoids determine their abilities to extend the shelf life of tomato. Plant Physiology 169:1568-1583. https://doi.org/10.1104/pp.15.00346

Zhu Z, Chen Y, Shi G, Zhang X (2017). Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chemistry 219:179-184. https://doi.org/10.1016/j.foodchem.2016.09.138

Published

2023-11-20

How to Cite

MEJÍA-RAMÍREZ, F., PÉREZ-LEÓN, M. I., BENAVIDES-MENDOZA, A., GONZÁLEZ-MORALES, S., JUÁREZ-MALDONADO, A., MORALES-DÍAZ, A. B., LARA-VIVEROS, F. M., & MORELOS-MORENO, Álvaro. (2023). Effect of root imbibition with selenium and iodine on antioxidant compounds in tomato (Solanum lycopersicum L.) crop. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(4), 13247. https://doi.org/10.15835/nbha51413247

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha51413247

Most read articles by the same author(s)