NIRS and multivariate methods for discrimination of morning glory species at different growth stages

Authors

  • Andreísa F. BRAGA Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Ciências Agrárias e Veterinárias, Departamento de Biologia, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n - Jaboticabal/SP, 14884-900 (BR)
  • Lívia C. de CARVALHO Universidade Estadual de Maringá, Campus Umuarama, Departamento de Tecnologia, Av. Ângelo Moreira da Fonseca, 1800 - Parque Danielle, Umuarama/PR, 87506-370 (BR)
  • Diogo P. CORREA da SILVA Universidade Federal de Goiás, Escola de Agronomia, Departamento de Engenharia de Alimentos, Goiânia/GO. Universidade Federal de Goiás Rodovia Goiânia-Nova Veneza, Km 0 S/n Campus, Samambaia, Goiânia/GO, 74690-900 (BR)
  • Thamires G. ANTUNES Universidade Federal de Goiás, Escola de Agronomia, Departamento de Engenharia de Alimentos, Goiânia/GO. Universidade Federal de Goiás Rodovia Goiânia-Nova Veneza, Km 0 S/n Campus, Samambaia, Goiânia/GO, 74690-900 (BR)
  • Luis CARLOS CUNHA JÚNIOR Universidade Federal de Goiás, Escola de Agronomia, Departamento de Engenharia de Alimentos, Goiânia/GO. Universidade Federal de Goiás Rodovia Goiânia-Nova Veneza, Km 0 S/n Campus, Samambaia, Goiânia/GO, 74690-900 (BR)
  • Gustavo H. de ALMEIDA TEIXEIRA University of Idaho (U of I), Kimberly Research and Extension Center. 3806 N 3600 E. Kimberly/ID, Zip code: 83341-5082 (BR)
  • Pedro L. da COSTA AGUIAR ALVES Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Ciências Agrárias e Veterinárias, Departamento de Biologia, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n - Jaboticabal/SP, 14884-900 (BR)

DOI:

https://doi.org/10.15835/nbha51313231

Keywords:

Ipomoea hederifolia, Merremia aegyptia, specific management, weeds, precision agriculture

Abstract

Morning glory species are weeds very common in tropical crops, where they cause direct and indirect damage. The management of these species primarily relies on the application of herbicides, disregarding the growth stage and spatial distribution. Studies addressing new techniques for identifying these species may contribute to the development of proximal sensors for carrying out specific and rational management. Thus, the objective of this work was to use near infrared spectroscopy (NIRS) and multivariate analysis to discriminate two species of morning glory in three growth stages. NIRS spectra were collected from Ipomoea hederifolia and Merremia aegyptia were collected at three different stages in the spectral range of 4.000 to 10.000 cm-1. PCA and PC-LDA were used to analyze the entire spectrum and specific bands. NIRS associated with PCA and PC-LDA were sufficient to discriminate I. hederifolia and M. aegyptia species and their growth stages. PCA allowed a proper segregation of stages and species when applied individually PC-LDA correctly classified between 90.93 to 100% of species and stages. The best discrimination results were observed in the NIR spectra ranges from 4.500 to 6.000 cm-1 and 4.500 to 6.000 + 6.500 to 7.750 cm-1. This study represents an advance in the research and implementation of NIRS technology to discriminate weed species for the future development of equipment to assist in the adoption and/or performance of a specific management of weeds, capable of contributing to the reduction in the use of herbicides in crops.

References

Alves FC, Bianco S, Nepomuceno MP, Martins JVF, Alves PLCA (2018). Shoot and root interference of morning glory on the initial growth of sugarcane. Anais da Academia Brasileira de Ciências 90:521-528. https://doi.org/10.1590/0001-3765201820160233

Amanah HZ, Joshi R, Masithoh RE, Choung MG, Kim KH, Kim G, Cho BK (2020). Nondestructive measurement of anthocyanin in intact soybean seed using Fourier Transform Near-Infrared (FT-NIR) and Fourier Transform Infrared (FT-IR) spectroscopy. Infrared Physics & Technology 111:103477. https://doi.org/10.1016/j.infrared.2020.103477

Barroso AAM, Ferreira PSH, Martins D (2019). Growth and development of Ipomoea weeds. Planta Daninha 37:1-9. https://doi.org/10.1590/S0100-83582019370100034

Bhullar MS, Walia US, Singh S, Singh M, Jhala AJ (2012). Control of Morningglories (Ipomoea spp.) in sugarcane (Saccharum spp.). Weed Technology 26:77-82. https://doi.org/10.16l4/WT-D-l1-00112.1

Bleiholder H, Kirfel H, Langelüddeke P, Stauss R (1991). Codificação Unificada dos Estádios Fenológicos de Culturas e Ervas Daninhas. Pesquisa Agropecuária Brasileira 26:1423-1429. https://doi.org/10.1590/S1678-3921.pab1991.v26.3483

Borraz-Martínez S, Simó J, Gras A, Mestre M, Boqué R (2019). Multivariate classification of Prunus dulcis varieties using leaves of nursery plants and near infrared spectroscopy. Scientific Reports 9:1-9. https://doi.org/10.1038/s41598-019-56274-5

Braga A, Chiconi L, Bacha A, Teixeira G, Cunha Junior L, Alves P (2023). Discrimination of morningglory species (Ipomoea spp.) using near-infrared spectroscopy and multivariate analysis. Weed Science 71(2):104-111. https://doi.org/10.1017/wsc.2023.6

Cunha Junior LC, Nardini V, Khatiwada BP, Teixeira GHA, Walsh KB (2015). Classification of intact açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart) fruits based on dry matter content by means of near infrared spectroscopy. Food Control 50:630-636. https://doi.org/10.1016/j.foodcont.2014.09.046

Giraudo, A, Grassi S, Savorani F, Gavoci G, Casiraghi E, Geobaldo F (2019). Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis. Food Control 99:137-145. https://doi.org/10.1016/j.foodcont.2018.12.033

Hansen KD, Garcia-Ruiz F, Kazmi W, Bisgaard M, La Cour-Harbo A, Rasmussen J, Andersen HJ (2013). An autonomous robotic system for mapping weeds in fields. IFAC Proceedings 46:217-224. https://doi.org/10.3182/20130626-3-AU-2035.00055

Hoagland D, Arnon D (1950). The water-culture method for growing plants without soil.: University of California, Berkeley.

Izadiyan P, Hemmateenejad B, Mohsen Taghavi S, Izadiyan M (2018). Discrimination of Shirazi thyme from thymus species and antioxidant activity prediction using chemometrics and FT-IR spectroscopy. Journal of the Iranian Chemical Society 15:259-268. https://doi.org/10.1007/s13738-017-1228-4

Jintao X, Yufei L, Liming Y, Chunyan L, Quanwei Y, Weiying W, Yun J, Minxiang Z, Peng L (2018). Rapid and simultaneous analysis of five alkaloids in four parts of Coptidis Rhizoma by near-infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 188:611-618. https://doi.org/10.1016/j.saa.2017.07.053

Klerkx L, Jakku E (2019). Labarthe P A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences 100315:90-91. https://doi.org/10.1016/j.njas.2019.100315

León L, Downey G (2006). Preliminary studies by visible and near-infrared reflectance spectroscopy of juvenile and adult olive (Olea europaea L.) leaves. Journal of the Science of Food and Agriculture 86:999-1004. https://doi.org/10.1002/jsfa.2448

Li H, Jiang D, Cao J, Zhang D (2020). Near-infrared spectroscopy coupled chemometric algorithms for rapid origin identification and lipid content detection of Pinus koraiensis seeds. Sensors 20:4905. https://doi.org/10.3390/s20174905

López-Granados F (2011). Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Research 151:1-11. https://doi.org/10.1111/j.1365-3180.2010.00829.x

Morais CLM, Lima KMG (2018). Principal component analysis with linear and quadratic discriminant analysis for identification of cancer samples based on mass spectrometry. Journal of the Brazilian Chemical Society 29:472-481. https://doi.org/10.21577/0103-5053.20170159

Nieto-Ortega S, Lara R, Foti G, Melado-Herreros Á, Olabarrieta I (2023). Applications of near-infrared spectroscopy (NIRS) in fish value chain. In: El-Azazy M, Al-Saad K, El-Shafie AS (Eds). Infrared Spectroscopy - Perspectives and Applications. IntechOpen. https://doi.org/10.5772/intechopen.100794

Nugraha DT, Zaukuu JLZ, Bósquez JPA, Bodor Z, Vitalis F, Kovacs Z (2021). Near-infrared spectroscopy and aquaphotomics for monitoring mung bean (Vigna radiata) sprout growth and validation of ascorbic acid content. Sensors 21:611. https://doi.org/10.3390/s21020611.

Pagnoncelli FB, Trezzi MM, Brum B, Vidal RA, Portes AF, Scalcon EL, Machado A (2017). Morning glory species interference on the development and yield of soybeans. Bragantia 76:470-479. https://doi.org/10.1590/1678-4499.2016.338

Pasquini C (2003). Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. Journal of the Brazilian Chemical Society 14:198-219. https://doi.org/10.1590/S0103-50532003000200006

Piza CST, Nepomuceno MP, Alves PLDCA (2016). Period prior to interference of morning glory in sugarcane. Científica 44:543. https://doi.org/10.15361/1984-5529.2016v44n4p543-548

Ribeiro NM, Torres BA, Ramos SK, Santos PHV, Simões CT, Monquero PA (2018). Differential susceptibility of morning glory (Ipomoea and Merremia) species to residual herbicides and the effect of drought periods on efficacy. Australian Journal of Crop Science 12:1090-1098. https://doi.org/10.21475/ajcs.18.12.07.PNE1013

Singh V, Rana A, Bishop M, Filippi AM, Cope D, Rajan N, Bagavathiannan M (2020). Unmanned aircraft systems for precision weed detection and management: Prospects and challenges. Advances in Agronomy 159:93-134. https://doi.org/10.1016/bs.agron.2019.08.004

Sohn SI, Pandian S, Oh YJ, Zaukuu JZ, Kang HJ, Ryu TH, Cho WS, Cho YS, Shin EK, Cho BK (2021). An overview of near infrared spectroscopy and its applications in the detection of genetically modified organisms. International Journal of Molecular Sciences 14:9940. https://doi.org/10.3390/ijms22189940

Souza MF, Amaral LR, Oliveira SRM, Coutinho MAN, Ferreira Netto C (2020). Spectral differentiation of sugarcane from weeds. Biosystems Engineering 190:41-46. https://doi.org/10.1016/j.biosystemseng.2019.11.023

Torres I, Sánchez MT, Benlloch-González M, Pérez-Marín D (2019). Irrigation decision support based on leaf relative water content determination in olive grove using near infrared spectroscopy. Biosystems Engineering 180:50-58. https://doi.org/10.1016/j.biosystemseng.2019.01.016

Van Evert FK, Fountas S, Jakovetic D, Crnojevic V, Travlos I, Kempenaar C (2017). Big Data for weed control and crop protection. Weed Research 57:218-233. https://doi.org/10.1111/wre.12255

Vitalis F, Zaukuu JLZ, Bodor Z, Aouadi B, Hitka G, Kaszab T, Kovacs Z (2020). Detection and quantification of tomato paste adulteration using conventional and rapid analytical methods. Sensors 20:6059. https://doi.org/10.3390/s20216059

Wang N, Zhang N, Wei J, Stoll Q, Peterson DE (2007). A real-time, embedded, weed-detection system for use in wheat fields. Biosystems Engineering 98:276-285. https://doi.org/10.1016/j.biosystemseng.2007.08.007

Wang P, Yu Z (2015). Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review. Journal of Pharmaceutical Analysis 5:277-284. https://doi.org/:10.1016/j.jpha.2015.04.001

Published

2023-08-31

How to Cite

BRAGA, A. F., de CARVALHO, L. C., CORREA da SILVA, D. P., ANTUNES, T. G., CARLOS CUNHA JÚNIOR, L., de ALMEIDA TEIXEIRA, G. H., & da COSTA AGUIAR ALVES, P. L. (2023). NIRS and multivariate methods for discrimination of morning glory species at different growth stages. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3), 13231. https://doi.org/10.15835/nbha51313231

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha51313231