Silicon increased the growth, productivity, and nutraceutical quality of tomato (Solanum lycopersicum L.)


  • Juan J. REYES-PÉREZ Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Los Ríos (EC)
  • Hilda C. TIPÁN-TORRES Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Los Ríos (EC)
  • Luis T. LLERENA-RAMOS Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Los Ríos (EC)
  • Luis G. HERNANDEZ-MONTIEL Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, 23096 (MX)
  • Tomas RIVAS-GARCIA CONACYT-Universidad Autónoma Chapingo, Carretera Federal México-Texcoco km 38.5, San Diego, Texcoco 56230, Texcoco (MX)



non-accumulator plants, sustainability, Solanaceae family, soil fertilization, plant biostimulant


Tomato (Solanum lycopersicum L.) is considered one of the most important horticultural crops worldwide due to its nutritional and organoleptic properties. Instead of chemical fertilizers, recent research has shown in several plant species the importance of silicon fertilization. Hence, the present investigation aims to evaluate the effect of three different doses (low, medium, and high dose) of silicon on the growth (stem length and diameter, root length diameter, and stem, leaf and root biomass), productivity (polar and equatorial fruit diameter, number of fruits per bunch and plant, and yield), and nutraceutical quality (total soluble solids, titratable acids, and vitamin C) parameters of tomato. The Si treatment affected the evaluated parameters in a dose dependent way in almost all the parameters evaluated. Despite the tomato is classified as a non-Si accumulator, it has a significant response to Si treatment at a low dose of 0.15 g plant-1, medium dose of 0.25 g plant-1, and high dose of 0.35 g plant-1 after 120 d of transplantation in terms of plant growth, yield, and quality parameters. The effectiveness of Si nutrition is dependent on factors such as element source, plant species, and cultivar, and even, the absorption and bioaccumulation capacity of this element could be different between varieties.


Al Murad M, Khan AL, Muneer S (2020). Silicon in horticultural crops: cross-talk, signaling, and tolerance mechanism under salinity stress. Plants 9(4):460.

Alam P, Arshad M, Al-Kheraif AA, Azzam MA, Al Balawi T (2022). Silicon nanoparticle-induced regulation of carbohydrate metabolism, photosynthesis, and ROS homeostasis in Solanum lycopersicum subjected to salinity stress. ACS omega 7(36):31834-31844.

Ali MY, Sina AAI, Khandker SS, Neesa L, Tanvir EM, Kabir A, … Gan SH (2020). Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods 10(1):45.

Alsaeedi AH, Elgarawany MM, El-Ramady H, Alshaal T, Al-Otaibi AOA (2019). Application of silica nanoparticles induces seed germination and growth of cucumber (Cucumis sativus). Journal of King Abdulaziz University-Meteorology Environment and Arid Land Agriculture Sciences 28:57-68.

Bhardwaj S, Kapoor D (2021). Fascinating regulatory mechanism of silicon for alleviating drought stress in plants. Plant Physiology and Biochemistry 166:1044-1053.

Buchelt AC, Teixeira GCM, Oliveira KS, Rocha AMS, de Mello Prado R, Caione G (2020). Silicon contribution via nutrient solution in forage plants to mitigate nitrogen, potassium, calcium, magnesium, and sulfur deficiency. Journal of Soil Science and Plant Nutrition 20:1532-1548.

Chen D, Wang S, Yin L, Deng X (2018). How does silicon mediate plant water uptake and loss under water deficiency?. Frontiers in Plant Science 9:281.

Costan A, Stamatakis A, Chrysargyris A, Petropoulos SA, Tzortzakis N (2020). Interactive effects of salinity and silicon application on Solanum lycopersicum growth, physiology and shelf‐life of fruit produced hydroponically. Journal of the Science of Food and Agriculture 100(2):732-743.

FAOSTAT (2022). Retrieved 2023 February 10 from:

Gomaa MA, Kandil EE, El-Dein AA, Abou-Donia ME, Ali HM, Abdelsalam NR (2021). Increase maize productivity and water use efficiency through application of potassium silicate under water stress. Scientific Reports 11(1):1-8.

Guerriero G, Stokes I, Valle N, Hausman JF, Exley C (2020). Visualizing silicon in plants: histochemistry, silica sculptures and elemental imaging Cells 9(4):1066.

Hasnain M, Chen J, Ahmed N, Memon S, Wang L, Wang Y, Wang P (2020). The effects of fertilizer type and application time on soil properties, plant traits, yield and quality of tomato. Sustainability 12(21):9065.

Huang H, Li M, Rizwan M, Dai Z, Yuan Y, Hossain MM, … Tu S (2021). Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. Journal of Hazardous Materials 401:123393.

Hussain S, Mumtaz M, Manzoor S, Shuxian L, Ahmed I, Skalicky M, … Liu W (2021). Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiology and Biochemistry 159:43-52.

Islam MZ, Mele MA, Ki-Young CHOI, Ho-Min K (2018). The effect of silicon and boron foliar application on the quality and shelf life of cherry tomatoes. Zemdirbyste-Agriculture 105(2):159-164.

Jarosz Z (2014). The effect of silicon application and type of medium on yielding and chemical composition of tomato. Acta Scientiarum Polonorum Hortorum Cultus 13(4):171-183.

Jiang N, Fan X, Lin W, Wang G, Cai K (2019). Transcriptome analysis reveals new insights into the bacterial wilt resistance mechanism mediated by silicon in tomato. International Journal of Molecular Sciences 20(3):761.

Kaur H, Greger M (2019). A review on Si uptake and transport system. Plants 8(4):81.

Khan A, Kamran M, Imran M, Al-Harrasi A, Al-Rawahi A, Al-Amri I, Lee I, Khan AL (2019). Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Scientific Reports 9(1):19788.

Knight CTG, Kinrade SD (2001) A primer on the aqueous chemistry of silicon. In: Datno LE, Snyder GH, Korndörfer GH (Eds). Silicon in Agriculture, Studies in Plant Science. Elsevier: Amsterdam, The Netherlands pp 57-84.

Kurdali F, Al-Chammaa M, Al-Ain F (2019). Growth and N2 fixation in saline and/or water stressed Sesbania aculeata plants in response to silicon application. Silicon 11:781-788.

Li H, Zhu Y, Hu Y, Han W, Gong H (2015). Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiologiae Plantarum 37:1-9.

Luo S, Ishida H, Makino A. Mae T (2002). Fe2+-catalyzed site-specific cleavage of the large subunit of ribulose 1, 5-bisphosphate carboxylase close to the active site. Journal of Biological Chemistry 277(14):12382-12387.

Mandlik R, Thakral V, Raturi G, Shinde S, Nikolić M, Tripathi DK, ... Deshmukh R (2020). Significance of silicon uptake, transport, and deposition in plants. Journal of Experimental Botany 71(21):6703-6718.

Manivannan A, Soundararajan P, Muneer S, Ko CH, Jeong BR (2016). Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’. BioMed Research International 2016.

Marmiroli M, Mussi F, Gallo V, Gianoncelli A, Hartley W, Marmiroli N (2022). Combination of Biochemical, Molecular, and Synchrotron-Radiation-Based Techniques to Study the Effects of Silicon in Tomato (Solanum lycopersicum L.). International Journal of Molecular Sciences 23(24):15837.

Meng F, Li Y, Li S, Chen H, Shao Z, Jian Y, ... Wang Q (2022). Carotenoid biofortification in tomato products along whole agro-food chain from field to fork. Trends in Food Science & Technology 124:296-308.

Muhammad I, Shalmani A, Ali M, Yang QH, Ahmad H, Li FB (2021). Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science 11:615942.

Mundada PS, Barvkar VT, Umdale SD, Kumar SA, Nikam TD, Ahire ML (2021). An insight into the role of silicon on retaliation to osmotic stress in finger millet (Eleusine coracana (L.) Gaertn). Journal of Hazardous Materials 403:124078.

Muneer S, Jeong BR (2015). Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant Growth Regulation 77:133-146.

Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic, M (2021). Interactions of silicon with essential and beneficial elements in plants. Frontiers in Plant Science 12:697592.

Peñaloza Lozada MB (2021). Evaluación del comportamiento agronómico del cultivo de tomate riñón (Solanum lycopersicum) con aplicación de dióxido de silicio (SIO2). Bachelor's thesis, Universidad Técnica de Ambato-Facultad de Ciencias Agropecuarias.

Rajput VD, Minkina T, Feizi M, Kumari A, Khan M, Mandzhieva S, ... Choudhary R (2021). Effects of silicon and silicon-based nanoparticles on rhizosphere microbiome, plant stress and growth. Biology 10(8):791.

Rastogi A, Yadav S, Hussain S, Kataria S, Hajihashemi S, Kumari P, ... Brestic M (2021). Does silicon really matter for the photosynthetic machinery in plant?. Plant Physiology and Biochemistry 169:40-48.

Schjoerring JK, Cakmak I, White PJ (2019). Plant nutrition and soil fertility: synergies for acquiring global green growth and sustainable development. Plant and Soil 434:1-6.

Shah K, Singh M, Rai AC (2015). Bioactive compounds of tomato fruits from transgenic plants tolerant to drought. LWT-Food Science and Technology 61(2):609-614.

Souri Z, Khanna K, Karimi N, Ahmad P (2021). Silicon and plants: current knowledge and future prospects. Journal of Plant Growth Regulation 40:906-925.

Stella G, Coli R, Maurizi A, Famiani F, Castellini C, Pauselli M, ... Menconi M (2019). Towards a national food sovereignty plan: application of a new decision support system for food planning and governance. Land Use Policy 89:104216.

Sun H, Duan Y, Mitani‐Ueno N, Che J, Jia J, Liu J, ... Gong H (2020). Tomato roots have a functional silicon influx transporter but not a functional silicon efflux transporter. Plant, Cell & Environment 43(3):732-744.

Ullah I, Mao H, Rasool G, Gao H, Javed Q, Sarwar A, Khan MI (2021). Effect of deficit irrigation and reduced N fertilization on plant growth, root morphology and water use efficiency of tomato grown in soilless culture. Agronomy 11(2):228.

Valencia J (2003). Effect of fertilizers on fruit quality of processing tomatoes. Acta Horticulturae 613:89-93.

Venancio JB, da Silva Dias N, de Medeiros JF, de Moraes PLD, do Nascimento CWA, de Sousa Neto ON, da Silva Sá FV (2022). Yield and morphophysiology of onion grown under salinity and fertilization with silicon. Scientia Horticulturae 301:111095.

Wade RN, Donaldson SM, Karley AJ, Johnson SN, Hartley SE (2022). Uptake of silicon in barley under contrasting drought regimes. Plant and Soil 477(1-2):69-81.

Wangkaew B, Prom-u-thai ChT, Jamjod S, Rerkasem B, Pusadee T (2019). Silicon concentration and expression of silicon transport genes in two Thai rice varieties. Chiang Mai University Journal of Natural Sciences 18:358-372.

Watanabe M, Ohta Y, Licang S, Motoyama N, Kikuchi J (2015). Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality. Food Chemistry 169:387-395.

Zhang Y, Yu SHI, Gong HJ, Zhao HL, Li HL, Hu YH, Wang YC (2018). Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture 17(10):2151-2159.



How to Cite

REYES-PÉREZ, J. J., TIPÁN-TORRES, H. C., LLERENA-RAMOS, L. T., HERNANDEZ-MONTIEL, L. G., & RIVAS-GARCIA, T. (2023). Silicon increased the growth, productivity, and nutraceutical quality of tomato (Solanum lycopersicum L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(2), 13155.



Research Articles
DOI: 10.15835/nbha51213155

Most read articles by the same author(s)