Aqueous extract of coconut shell biochar as a pre-germination treatment increases seed germination and early seedling growth in chiltepín pepper (Capsicum annuum var. glabriusculum)
DOI:
https://doi.org/10.15835/nbha51113097Keywords:
capsaicinoids, dormancy, germinability, vigor indexAbstract
Since the fruit of the Capsicum annuum L. var. glabriusculum (Dunal) Heiser and Pickergil (chiltepín pepper) has a low germination rate, we sought to determine whether using an aqueous biochar extract could improve this. Germination tests were performed out in Petri dishes, using wild chiltepín pepper seeds collected in Sonora, México, which were exposed for 24 h to aqueous extracts of coconut shell biochar (CSBA) at different doses (0.05, 0.10, 0.25, 0.50, 0.75, and 1.00%, w/v) and a control comprising deionized water. In addition to quantifying the germination rate, we determined the physical quality, viability, imbibition, electrical conductivity, seed pH, and capsaicin content. The fast green test showed an ideal physical quality (p = 0.5475), an imbibition rate > 65% (p > 0.05), and high viability 98.4% (p > 0.05). The wild chiltepín pepper seeds exposed to the CSBA0.05 and CSBA0.25 treatments increased the percentage germination rate (p < 0.001) to 80.9% and 71.7%, respectively. A higher percentage of normal seedlings resulted from CSBA0.05, CSBA0.10 and CSBA1.00 (p < 0.01), and a greater shoot length was obtained with CSBA0.05 (p < 0.01). The exposure of wild chiltepín seeds to aqueous CSBA for 24 h at low doses (CSBA0.05 and CSBA0.25) increase the germination rate, while CSBA0.05 could enhance early seedling growth.
References
Abdelhafez AA, Zhang X, Zhou L, Cai M, Cui N, Chen G, … Hamed MH (2021). Eco-friendly production of biochar via conventional pyrolysis: application of biochar and liquefied smoke for plant productivity and seed germination. Environmental Technology & Innovation 22:101540. https://doi.org/10.1016/j.eti.2021.101540
Alcalá-Rico JSGJ, López-Benítez A, Vázquez-Badillo ME, Sánchez-Aspeytia D, Rodríguez-Herrera SA, Pérez-Rodríguez MA, Ramírez-Godina F (2019). Seed physiological potential of Capsicum annuum var. glabriusculum genotypes and their answers to pre-germination treatments. Agronomy 9(6):325. https://doi.org/10.3390/agronomy9060325
Bai X, Zhang S, Shao J, Chen A, Jiang J, Chen A, Luo S (2022). Exploring the negative effects of biochars on the germination, growth, and antioxidant system of rice and corn. Journal of Environmental Chemical Engineering 10(3):107398. https://doi.org/10.1016/j.jece.2022.107398
Barchenger DW, Bosland PW (2016). Exogenous applications of capsaicin inhibits seed germination of Capsicum annuum. Scientia Horticulturae 203:29-31. https://doi.org/10.1016/j.scienta.2016.03.009
Beltrán-Burboa JN, López-Peralta MCG, Hernández-Meneses E, Cruz-Huerta N (2020). In vitro seed germination of chiltepin pepper (Capsicum annuum L. var. glabriusculum) and plant regeneration via organogenesis. Agrociencia 54(2):195-208. https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/1901/1898
Bissoli G, Bono M, Martínez-Almonacid I, Moreno-Peris E, Renard J, Espinosa A, … Rodríguez-Burruezo A (2022). Seed coat lignification level is crucial in Capsicum spp seed longevity. Physiologia Plantarum 174:e13600. https://doi.org/10.1111/PPL.13600
Cano-González MÁ, Ayil-Gutiérrez BA, Delgado-Martínez R, Osorio-Hernández E, Rangel-Lucio JA, Poot-Poot WA (2021). Physiological potential of piquin pepper seeds in response to pregermination treatments. Ciência e Agrotecnologia 45:e019521. https://doi.org/0.1590/1413-7054202145019521
Cano-Vázquez A, López-Peralta MC, Zavaleta-Mancera HA, Cruz-Huerta N, Ramírez-Ramírez I, Gardea-Béjar A, González-Hernández VA (2015). Variation in degrees of seed dormancy among collections of chile piquin (Capsicum annuum var. glabriusculum). Botanical Science 93:175-184. https://doi.org/10.17129/botsci.138
Díaz-Sánchez DD, López PA, López-Sánchez H, Silva-Rojas HV, Gardea-Béjar AA, Cruz-Huerta N, … González-Hernández VA (2021). Pungency and fruit quality in Mexican landraces of piquín pepper (Capsicum annuum var. glabriusculum) as affected by plant growth environment and postharvest handling. Chilean Journal Agricultural Research 81(4):546-556. https://doi.org/10.4067/S0718-58392021000400546
French E, Iyer-Pascuzzi AS (2018). A role for the gibberellin pathway in biochar-mediated growth promotion. Scientific Reports 8:5389. https://doi.org/10.1038/s41598-018-23677-9
Głodowska M, Husk B, Schwinghamer T, Smith D (2016). Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agronomy for Sustainable Development 36:21. https://doi.org/10.1007/s13593-016-0356-z
Gokdas Z, Yildirim E, Gupta S, Demir I (2022). Karrikinolide stimulated seed germination of artificially aged marrow, cabbage and pepper seeds through repair of cell structure and enzyme activity. South African Journal Botany 151:208-213. https://doi.org/10.1016/j.sajb.2022.09.049
Hayano-Kanashiro C, Gámez-Meza N, Medina-Juárez LÁ (2016). Wild pepper Capsicum annuum L. var. glabriusculum: taxonomy, plant morphology, distribution, genetic diversity, genome sequencing, and phytochemical compounds. Crop Science 56:1-11. https://doi.org/10.2135/cropsci2014.11.0789
International Seed Testing Association ISTA (2020). International Rules for Seed Testing. International Seed Testing Association. Switzerland, NW Bassersdorf.
Jiménez-Leyva A, Gutiérrez A, Ojeda-Contreras ÁJ, Vargas G, Esqueda M, Orozco-Avitia JA (2022). Seasonal phenology, shade reliance, and ecophysiology of wild Capsicum annuum var. glabriusculum in Sonoran Desert. Journal of Arid Environments 201:104736. https://doi.org/10.1016/j.jaridenv.2022.104736
Joseph S, Cowie AL, Van Zwieten L, Bolan N, Budai A, Buss W, … Lehmann J (2021). How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. Global Change Biology Bioenergy: Bioproducts for a Sustainable Bioeconomy 13(11):1731-1764. https://doi.org/10.1111/gcbb.12885
Junaidy RB, Shahruddin S (2022). Germinability and seedling growth performance of chilli (Capsicum annuum) seeds in response to different gibberellic acid concentrations pre-treatment. AgroTech Food Science, Technology and Environment 1:10-16. https://doi.org/10.53797/agrotech.v1i1.2.2022
Kochanek J, Long RL, Lisle AT, Flematti GR (2016). Karrikins identified in biochars indicate post-fire chemical cues can influence community diversity and plant development. PLoS One 11(8):e0161234. https://doi.org/10.1371/journal.pone.0161234
Louf JF, Zheng Y, Kumar TA, Bohr T, Gundlach C, Harholt J, … Jensen KH (2018). Imbibition in plant seeds. Physical Review E 98(4):042403. https://doi.org/10.1103/PhysRevE.98.042403
Ma J, Quan G, Yan J, Ippolito JA, Cui L, Wang H, Sun Y (2022). Biochar extract compounds alter germination and growth of crop seed. BioResources 17(3):4151-4166. https://doi.org/10.15376/biores.17.3.4151-4166
Mares-Quiñones MD, Valiente-Banuet JI (2019). Horticultural aspects for the cultivated production of piquin peppers (Capsicum annuum L. var. glabriusculum)-A review. HortScience 54(1):70-75. https://doi.org/10.21273/HORTSCI13451-18
Nietzel T, Mostertz J, Ruberti C, Née G, Fuchs P, Wagner S, … Schwarzländer M (2020). Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proceedings of the National Academy of Sciences 117(1):741-751. https://doi.org/10.1073/pnas.1910501117
Olisa BS, Awosanmi FE, Akinropo MS, Ojo PO, Ishiak K, Danlami A, … Okeke CU (2021). Differential response of commercial hybrid and open pollinated maize seeds to mechanical damage during seed processing. Notulae Scientia Biologicae 13(4):10738-10738. https://doi.org/10.15835/nsb13410738
Palma-Orozco G, Orozco-Álvarez C, Chávez-Villeda AA, Mixtega-Martínez A, Castro-Muñoz R (2021). Capsaicin content in red habanero chilli (Capsicum chinense Jacq.) and its preservation after drying process. Future Foods 4:100070. https://doi.org/10.1016/j.fufo.2021.100070
Prado JPD, Krzyzanowski FC, Martins CC, Vieira RD (2019). Physiological potential of soybean seeds and its relationship to electrical conductivity. Journal of Seed Sciece 41(4):407-415. https://doi.org/10.1590/2317-1545v41n4214988
Quintero CMF, Castillo OG, Sánchez PD, Marín-Sánchez J, Guzmán AI, Sánchez A, Guzmán JM (2018). Relieving dormancy and improving germination of Piquín chili pepper (Capsicum annuum var. glabriusculum) by priming techniques. Cogent Food & Agriculture 4:1550275. https://doi.org/10.1080/23311932.2018.1550275
Sami A, Zhu ZH, Zhu TX, Zhang DM, Xiao LH, Yu Y, Zhou KJ (2022). Influence of KAR1 on the plant growth and development of dormant seeds by balancing different factors. International Journal Environmental Science and Technology 19(4):3401-3410. https://doi.org/10.1007/s13762-021-03282-6
Sandoval-Rangel A, Tapia-González A, Cabrera-De la Fuente M, González-Fuentes JA, Benavides-Mendoza A (2018). Age, benefit and gibrellic acid affect the germination and production of piquín pepper plant. Revista Mexicana de Ciencias Agrícolas 9(special issue 20):4199-4209. https://doi.org/10.29312/remexca.v0i20.990
Satya Srii V, Nagarajappa N, Vasudevan SN (2022). Is seed coat structure at fault for altered permeability and imbibition injury in artificially aged soybean seeds? Crop Science 62(4):1573-1583. https://doi.org/10.1002/CSC2.20750
Socrates G (2004). Infrared and raman characteristic group frequencies: tables and charts. John Wiley & Sons Ltd. (3rd ed), Chichester, UK. Volume 35.
Vazquez-Flores AA, Góngora-Pérez O, Olivas-Orduña I, Muñoz-Bernal ÓA, Osuna-Avila P, Rodrigo-García J, … Alavarez-Parrilla E (2020). Pytochemical profile and antioxidant activity of chiltepin chili (Capsicum annuum var. glabriusculum), Sonora, Mexico. Journal of Food Bioactives 11:57-65. https://doi.org/10.31665/jfb.2020.11237
Yu X, Li A, Li W (2015). How membranes organize during seed germination: three patterns of dynamic lipid remodelling define chilling resistance and affect plastid biogenesis. Plant, Cell & Environment 38(7):1391-1403. https://doi.org/10.1111/pce.12494

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mari C. LÓPEZ-PÉREZ, Antonio JUÁREZ-MALDONADO, Adalberto BENAVIDES-MENDOZA, Susana GONZÁLEZ-MORALES, Fabián PÉREZ-LABRADA

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.