Biofortification with ZnO NPs as nanofertilizers to improve sustainable commercial and phytochemical quality in basil plants


  • Manuel FORTIS-HERNÁNDEZ Tecnológico Nacional de México, Campus Instituto Tecnológico de Torreón, División de Estudios de Posgrado e Investigación; Carretera Torreón – San Pedro, km 7.5, Ejido Ana, 27170, Torreón, Coahuila (MX)
  • Claudia V. DE LA ROSA-RETA Tecnológico Nacional de México, Campus Instituto Tecnológico de Torreón, División de Estudios de Posgrado e Investigación; Carretera Torreón – San Pedro, km 7.5, Ejido Ana, 27170, Torreón, Coahuila (MX)
  • Magdalena GALINDO-GUZMÁN Universidad Politécnica de la Región Laguna; Calle sin nombre sin número, Ejido Santa Teresa, 27942, San Pedro de las Colonias, Coahuila (MX)
  • Pablo PRECIADO-RANGEL Tecnológico Nacional de México, Campus Instituto Tecnológico de Torreón, División de Estudios de Posgrado e Investigación; Carretera Torreón – San Pedro, km 7.5, Ejido Ana, 27170, Torreón, Coahuila (MX)
  • Alma P. GALINDO-GUZMÁN Tecnológico Nacional de México, Campus Instituto Tecnológico de Torreón, División de Estudios de Posgrado e Investigación; Carretera Torreón – San Pedro, km 7.5, Ejido Ana, 27170, Torreón, Coahuila (MX)
  • Erika FLORES-LOYOLA Universidad Autónoma de Coahuila, Facultad de Ciencias Biológicas; Carretera Torreón – Matamoros, km 7.5, Ejido El Águila, 27276, Torreón, Coahuila (MX)



biofortification, hydroponics, mineral elements, nanotechnology, Ocimum basilicum, zinc


Biofortification is the process of developing a crop with bioavailable micronutrients in its edible parts. This has been done using nanofertilizers, since they can be used to feed plants in a gradual and controlled manner. Therefore, the aim of this work was to evaluate the effect of foliar application of ZnO NPs in different concentrations on the commercial and phytochemical quality of the basil (Ocimum basilicum L.) crop, as it is one of the most important aromatic plants used for chemical and pharmacological properties. Four concentrations of ZnO NPs (5, 10, 15 and 20 mg L-1) and a control treatment under a completely randomized design, were evaluated. The results show statistical differences in morphological parameters (leaf and stem fresh weight, height, number of leaves, leaf area and dry weight) with a slight tendency to increase on the treated basil plants mainly at concentration of 20 mg L-1. The highest chlorophyll content (5.54 µg g-1 FW) was obtained for the control treatment, whereas the lowest one (4.14 µg g-1 FW) was observed for the 20 mg L-1 treatment. However, carotenoid content in the leaves was markedly higher than the control, the control had the concentration of 0.84 µg g-1 FW, while the treatment with 20 mg L-1 ZnO NPs registered a value of 1.08 µg g-1 FW. The highest total phenolic, flavonoid, antioxidant capacity and vitamin C content was obtained for 20 mg L-1 ZnO NPs. Finally, basil plants treated with ZnO NPs could stimulate enzymatic activity, as demonstrated in this study. Detailed studies are suggested to understand the mechanism of action of nanoscale materials.


Abbasifar A, Shahrabadi F, ValizadehKaji B (2020). Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. Journal of Plant Nutrition 43(8):1104-1118.

Aebi HE (1983). Catalase. In: Methods of enzymatic analysis. Bergmeyer HU (Ed). Verlag Chemie Weinhem. pp 273-286.

Alici EH, Arabaci G (2016). Determination of SOD, POD, PPO and cat enzyme activities in Rumex obtusifolius L. Annual Research & Review in Biology 1-7.

Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, ... Tuteja N (2016). Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants. Environmental Science and Pollution Research 23(19):19002-19029.

Balashouri P (1995). Effect of zinc on germination, growth and pigment content and phytomass of Vigna radiata and Sorghum bicolor. Journal of Ecobiology 7:109-114.

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2):248-254.

Buturi CV, Mauro RP, Fogliano V, Leonardi C, Giuffrida F (2021). Mineral biofortification of vegetables as a tool to improve human diet. Foods 10(2):223.

Elemike EE, Nwankwo HU, Onwudiwe DC (2019). Synthesis and comparative study on the anti-corrosion potentials of some Schiff base compounds bearing similar backbone. Journal of Molecular Liquids 276:233-242.

El-Kereti MA, El-feky SA, Khater MS, Osman YA, El-sherbini ESA (2013). ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Patents on Food, Nutrition & Agriculture 5(3):169-181.

Faizan M, Hayat S, Pichtel J (2020). Effects of zinc oxide nanoparticles on crop plants: A perspective analysis. In: Sustainable Agriculture Reviews 41:83-99.

Fortis-Hernández M, García-Delgado JD, Preciado-Rangel P, Trejo-Valencia R, Sánchez-Estrada A, Fortiz-Hernández J (2022). Commercial and phytochemical quality in biofortified ‘Orejona’ lettuce with zinc oxide nanoparticles. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50(4):12969.

Galindo-Guzmán AP, Fortis-Hernández M, De La Rosa-Reta CV, Zermeño-González H, Galindo-Guzmán M (2022). Síntesis química de nanopartículas de óxido de zinc y su evaluación en plántulas de Lactuca sativa. Revista Mexicana de Ciencias Agrícolas (28):299-308.

García-Gómez C, Obrador A, González D, Babin M, Fernández MD (2017). Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Science of the Total Environment 589:11-24.

García-López JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldivar RH, Barriga-Castro ED, Vázquez-Alvarado R, … Zavala-García F (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8(8):254.

García-López JI, Zavala-García F, Olivares-Sáenz E, Lira-Saldívar RH, Díaz Barriga-Castro E, Ruiz-Torres NA, … Niño-Medina G (2018). Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy 8(10):215.

Hidalgo A, Šaponjac VT, Ćetković G, Šeregelj V, Čanadanović-Brunet J, Chiosa D, Brandolini A (2019). Antioxidant properties and heat damage of water biscuits enriched with sprouted wheat and barley. LWT 114:108423.

Hong J, Wang C, Wagner DC, Gardea-Torresdey JL, He F, Rico CM (2021). Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environmental Science: Nano 8(5):1196-1210.

Hsu CL, Chen W, Weng YM, Tseng CY (2003). Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chemistry 83(1):85-92.

Janmohammadi M, Amanzadeh T, Sabaghnia N, Dashti S (2016). Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica 107(2):265-276.

Jha AB, Warkentin TD (2020). Biofortification of pulse crops: Status and future perspectives. Plants 9(1):73.

Kawashima LM, Valente Soares LM (2003). Mineral profile of raw and cooked leafy vegetables consumed in Southern Brazil. Journal of Food Composition and Analysis 16(5):605–611.

KhavariNejad R, Najafi F, Arvin P, Firuzeh R (2014). Study different levels of zinc sulphate (ZnSO4) on fresh and dry weight, leaf area, relative water content and total protein in bean (Phaseolus vulgaris L.) plant. Bulletin of Environment Pharmacology and Life Sciences 3:144-151.

Laminkanra O (1995). Enzymatic browning of muscadine grapes products. Enzymatic browning and its prevention. ACS. Washington DC, USA pp 166-177.

Li R, He J, Xie H, Wang W, Bose SK, Sun Y, Hu J, Yin H (2019). Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). International Journal of Biological Macromolecules 126:91-100.

Lichtenthaler HK, Wellburn AR (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. 11(5):591-592.

López-Morales D, De La Cruz-Lázaro E, Sánchez-Chávez E, Preciado-Rangel P, Márquez-Quiroz C, Osorio-Osorio R (2020). Impact of agronomic biofortification with zinc on the nutrient content, bioactive compounds, and antioxidant capacity of cowpea bean (Vigna unguiculata L. Walpers). Agronomy 10(10):1460.

Luna CM, Casano LM, Trippi VS, (2000). Inhibition of wheat nitrate reductase activity by zinc. Biologia Plantarum 43(2):257-262. 412055

Mohsenzadeh S, Moosavian SS (2017). Zinc sulphate and nano-zinc oxide effects on some physiological parameters of Rosmarinus officinalis. American Journal of Plant Sciencies 8(11):2635-2649.

Muhammad S (2011). Effects of zinc fertilizer application on the incidence of rice stem borers (Scirpophaga species) (Lepidoptera pyralidae) in rice (Oryza sativa L.) crop. Journal of Cereals and Oilseeds 2(5):61-65.

Oktay M, Küfrevioǧlu I, Kocaçalışkan I, Şakiroǧlu H (1995). Polyphenoloxidase from Amasya apple. Journal of Food Science 60(3):494-496.

Onsa GH, Saari N, Selamat J, Bakar J (2004). Purification and characterization of membrane-bound peroxidases from Metroxylon sagu. Food Chemistry 85:365-376.

Padayatt S, Daruwala R, Wang Y, Eck PK, Song J, Koh WS, Levine M (2001). Vitamin C: from molecular actions to optimum intake. In: Cadenzas E, Packer L (Eds). Handbook of Antioxidants. CRC press. Washington DC, USA pp 117-145.

Plank CO (1992). Plant analysis reference procedures for the southern region of the United States. South Coop Ser Bull, 368.

Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012). Effect of nanoscalezinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35(6):905-927.

Preciado-Rangel P, Campos-Ortiz A, Chávez ES, Reyes-González A, Ruiz-Espinoza F, Ojeda-Barrios D, Hernández-Montiel L (2021). Zinc biofortification improves yield, nutraceutical quality and antioxidant capacity in lettuce. Tropical and Subtropical Agroecosystems 24(3).

Ramírez-Barrón SN, Sánchez-Valdés S, Puente-Urbina BA, Martínez-Montemayor S, Esparza-González SC, Betancourt Galindo R (2019). Preparation of a Pressure Sensitive Adhesive (PSA) with the ZnO Nanoparticles Incorporation. Study of its physicochemical and antimicrobial properties. Revista Mexicana de Ingeniería Biomédica 40(1):1-10.

Rivera-Gutiérrez RG, Preciado-Rangel P, Fortis-Hernández M, Betancourt-Galindo R, Yescas-Coronado P, Orozco-Vidal JA (2021). Zinc oxide nanoparticles and their effect on melon yield and quality. Revista Mexicana de Ciencias Agrícolas 12(5):791-803.

Roohani N, Hurrell R, Kelishadi R, Schulin R (2013). Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences 18(2):144-157.

Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry 135:160-166.

Sida-Arreola JP, Sánchez E, Ojeda-Barrios DL, Ávila-uezada GD, Flores-Córdova MA, Márquez-Quiroz C, Preciado-Rangel P (2017). Can biofortification of zinc improve the antioxidant capacity and nutritional quality of beans?. Emirates Journal of Food and Agriculture 29(3):237.

Singh D, Chaudhuri PK (2018). A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Industrial Crops and Products 118:367-382.

Singh U, Praharaj CS, Chaturvedi SK, Bohra A (2016). Biofortification: Introduction, approaches, limitations, and challenges. In Biofortification of food crops, Springer, New Delhi pp 3-18.

Singleton VL, Orthofer R, Lamuela-Raventós RM (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299(7):152-178.

Solanki M (2021). The Zn as a vital micronutrient in plants. Journal of Microbiology, Biotechnology and Food Sciences11(3):e4026-e4026.

Song CZ, Liu MY, Meng JF, Chi M, Xi ZM, Zhang ZW (2015). Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. merlot growing on zinc deficient soil. Molecules 20(2):2536-2554.

Srivastav P, Vutukuru M, Ravindran G, Awad, MM (2022). Biofortification-present scenario, possibilities and challenges: a scientometric approach. Sustainability 14(18):11632.

Steiner A (1961). A universal method for preparing nutrient solutions of a certain desired compositions. Plant and Soil 15(2):134-154.

Sutter K, Jung K, Krauss J (2002). Effects of heavy metals on the nitrogen metabolism of the aquatic moss Fontinalis antipyretica L. ex Hedw: A 15N tracer study. Environmental Science and Pollution Research International 9(6):417-421.

Vojodi Mehrabani L, Valizadeh Kamran R, Hassanpouraghdam MB, Pessarakli M (2017). Zinc sulfate foliar application effects on some physiological characteristics and phenolic and essential oil contents of Lavandula stoechas L. under sodium chloride (NaCl) salinity conditions. Communications in Soil Science and Plant Analysis 48(16):1860-1867.

Yan S, Wu F, Zhou S, Yang J, Tang X, Ye W (2021). Zinc oxide nanoparticles alleviate the arsenic toxicity and decrease the accumulation of arsenic in rice (Oryza sativa L.). BMC Plant Biology 21(1):1-11.

Zahedi SM, Moharrami F, Sarikhani S, Padervand M (2020). Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Scientific Reports 10(1):1-18.



How to Cite

FORTIS-HERNÁNDEZ, M., DE LA ROSA-RETA, C. V., GALINDO-GUZMÁN, M., PRECIADO-RANGEL, P., GALINDO-GUZMÁN, A. P., & FLORES-LOYOLA, E. (2023). Biofortification with ZnO NPs as nanofertilizers to improve sustainable commercial and phytochemical quality in basil plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(2), 13078.



Research Articles
DOI: 10.15835/nbha51213078

Most read articles by the same author(s)

1 2 > >>