Iodine application in Vitis vinifera L. cv. ‘Cabernet Sauvignon’ improve bioactive compounds and enzymatic activity in berries

Authors

  • Valeria B. RAMÍREZ-GOTTFRIED Tecnologico Nacional de México/Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro de las Colonias Km 7.5, Ejido Ana, Torreón, Coahuila 27170 (MX)
  • Manuel FORTIS-HERNÁNDEZ Tecnologico Nacional de México/Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro de las Colonias Km 7.5, Ejido Ana, Torreón, Coahuila 27170 (MX)
  • Ramiro GONZÁLEZ-AVALOS Universidad Autónoma Agraria Antonio Narro. Unidad Laguna, Periférico Raúl López Sánchez s/n, Colonia Valle Verde, 27054. Torreón, Coahuila (MX)
  • Pablo PRECIADO-RANGEL Tecnologico Nacional de México/Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro de las Colonias Km 7.5, Ejido Ana, Torreón, Coahuila 27170 (MX) https://orcid.org/0000-0002-3450-4739

DOI:

https://doi.org/10.15835/nbha51113074

Keywords:

agronomic biofortification, bioactive compounds, Vitis vinifera L., yield

Abstract

Iodine (I) deficiency disorders represent a worldwide public health problem, with at least 1.9 million people estimated to have an unsatisfactory intake of this trace element. I content in plant foods is particularly low; however, it can be improved by biofortification. In this study, the effect of foliar fertilization with I (0, 0.25, 0.5, 0.75, 1.0, and 1.25 mg L-1) on yield, bioactive compound content, and bioaccumulation in grapevine berries was evaluated. Biofortification with I has positively modified yield, bioactive compound content and bioaccumulation. Intermediate doses (0.75 mg L-1) increased yield (57%), while high doses (1.25 mg L-1) decreased yield (28%) and incremented the phenols, flavonoids, antioxidant capacity, vitamin C, anthocyanin (50,34,31,71,26% respectively), catalase (73%) and peroxidase activity (57%), and their bioaccumulation in berries (59%). Agronomic biofortification with I is an alternative to increase yield, enzymatic and non-enzymatic antioxidants, as well as the concentration of this trace element in grape berries.

References

Anwar F, Omar Asar T, Al-Abassi F, Kumar V, Alhayyani S (2022). Natural sea salt in diet ameliorates better protection compared to table salt in the doxorubicin-induced cardiac remodelling. Journal of Taibah University for Science 16(1):1213-1224. https://doi.org/10.1080/16583655.2022.2154491

AOAC International (1990). Official Methods of Analysis. 15th Ed., Association of Official Analytical Chemists, Washington, DC. Official Method.

Barreto ML (2017). Desigualdades en Salud: una perspectiva global. Ciência & Saúde Coletiva 22(7):2097-2108. https://doi.org/10.1590/1413-81232017227.02742017

Blouin J, Guimberteau G (2003). Maduración y Madurez de la Uva. Mundiprensa. Madrid, España.

Brand-Williams W, Cuvelier M, Berset C (1995). Use of a free radical method to evaluate antioxidant activity. Food Science 28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Budke C, Dierend W, Schön H, Hora K, Mühling K, Daum D (2021). Iodine Biofortification of Apples and Pears in an Orchard Using Foliar Sprays of Different Composition. Frontier in Plant Science 12:638671. https://doi.org/10.3389/fpls.2021.638671

Budke C, Thor S, Mühling K, Broll G, Daum D (2020). Iodine biofortification of field-grown strawberries – approaches and their limitations. Scientia Horticulturae 269:109317. https://doi.org/10.1016/j.scienta.2020.109317

Cabeller C (2017). Cuál es el momento adecuado para la cosecha de la uva?. La Noche En Vino. Retrieved 2022 April 24 from https://lanocheenvino.com/2017/04/29/cual-es-el-momento-adecuado-para-la-cosecha-de-la-uva/

Cakmak I, Prom-U-Thai C, Guilherme G, Rashid A, Hora K, Yazici A, Ozturk L (2017). Iodine biofortification of wheat, rice and maize through fertilizer strategy. Plant and Soil 418(1):319-335. https://doi.org/10.1007/s11104-017-3295-9

Cesar J, Santos I, Black R, Chrestani M, Duarte F, Nilson E (2020). Iodine status of Brazilian school-age children: a national cross-sectional survey. Nutrients 12(4):1077. https://doi.org/10.3390/nu12041077

Consentino B, Rouphael Y, Ntatsi G (2022). Agronomic performance and fruit quality in reenhouse grown eggplant are interactively modulated by iodine dosage and grafting. Scientia Horticulturae 295:110891. https://doi.org/10.1016/j.scienta.2022.110891

Cortés C, Rodríguez M, Benavides A, García J, Tornero M, Sánchez P (2016). El yodo aumenta el crecimiento y la concentración de minerales en plántulas de pimiento morrón. Agrociencia 50(6):747-758.

Daum D (2021). Iodine biofortification of apples and pears in an orchard using foliar sprays of different composition. Frontiers in Plant Science 12:638671. https://doi.org/10.3389/fpls.2021.638671

David M, Munaswamy V, Halappa R, Marigoudar S (2008). Impact of sodium cyanide on catalase activity in the freshwater exotic carp, Cyprinus carpio (Linnaeus). Pesticide Biochemistry and Physiology 92(1):15-18. https://doi.org/10.1016/j.pestbp.2008.03.013

Dorey E, Fournier P, Léchaudel M, Tixier P (2016). A statistical model to predict titratable acidity of pineapple during fruit developing period responding to climatic variables. Scientia Horticulturae 210:19-24. https://doi.org/10.1016/j.scienta.2016.07.014

Duborská E, Urík M, Šeda M (2020). Iodine biofortification of vegetables could improve iodine supplementation status. Agronomy 10(10):1574. https://doi.org/10.3390/agronomy 10101574

Eastman CJ, Zimmermann MB (2018). The iodine deficiency disorders. In: Endotext Dartmouth MA. Available from: https://www.ncbi.nlm.nih.gov/books/NBK285556/

Franco-Bañuelos A, Hernández S, Contreras C, Carranza J, Carranza C (2019). Use of growth regulators on the total phenolic content and the antioxidant capacity of “red globe” grape. Agrociencia 53(6):881-894.

García-Fuentes JE, Herrera-Castellano BF, Rivas Martínez EN, Narváez Ortiz WA, Benavides-Mendoza A, Medrano-Macias J (2022). Outcomes of foliar iodine application on growth, minerals and antioxidants in tomato plants under salt stress. Folia Horticulturae 34(1):27-37. https://doi.org/10.2478/FHORT-2022-0003

García-Nava M (2009). Cuantificación de fenoles y flavonoides totales en extractos naturales. Universidad Autónoma de Querétaro Revista Academica 1:1-4. https://.uaq.mx/investigacion/difusion/.../56_IUAQGarciaNava.pdf

Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Aora P (2018). Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition 5(12). https://doi.org/10.3389/fnut.2018.00012

Gonzali S, Kiferle C, Perata P (2017). Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Current Opinion in Biotechnology 44(1):16-26. https://doi.org/:10.1016/j.copbio.2016.10.004

Halka M, Smolen S, Czernicka M, Klimek-Chodacka M, Pitala J, Tutaj K (2019). Iodine biofortification through expression of HMT, SAMT and S3H genes in Solanum lycopersicum L. Plant Physiology and Biochemistry 144:35-48. https://doi.org/10.1016/j.plaphy.2019.09.028

Halka M, Smoleń S, Ledwożyw I, Włodzimierz S (2020). Comparison of effects of potassium iodide and iodosalicylates on the antioxidant potential and iodine accumulation in young tomato plants. Journal of Plant Growth Regulation 39(1):282-295. https://doi.org/10.1007/s00344-019-09981-2

Halka M, Smoleń S, Ledwozyw-Smoleń I (2020). Antioxidant potential and iodine accumulation in tomato (Solanum lycopersicum L.) seedlings as the effect of the application of three different iodobenzoates. Folia Horticulturae 32(2):203-219. https://doi.org/10.2478/fhort-2020-0019

Hernández-Hernández H, Quiterio T, Cadenas G, Ortega H, Hernández A, De La Fuente M, Valdés J, Juárez A (2019). Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants 8(10):355. https://doi.org/10.3390/plants8100355

Huber K, Fernández J, Webb C, Rouzard K, Healy J, Tamura M, Pérez E (2021). AGSE: A novel grape seed extract enriched for PP2A activating flavonoids that combats oxidative stress and promotes skin health. Molecules 26(21):6351. https://doi.org/10.3390/molecules26216351

Incrocci L, Carmassi G, Maggini R, Poli C, Saidov D, Tamburini C, Kiferle C, Perata P, Pardossi A (2019). Iodine accumulation and tolerance in sweet basil (Ocimum basilicum L.) with green or purple leaves grown in floating system technique. Frontiers in Plant Science 10:1494. https://doi.org/10.3389/fpls.2019.01494

Kiferle C, Ascrizzi R, Martinelli M, Gonzali S, Mariotti L, Pistelli L, Perata P (2019). Effect of Iodine treatments on Ocimum basilicum L.: Biofortification, phenolics production and essential oil composition. PLoS One 14(12):1-23. https://doi.org/10.1371/journal.pone.0226559

Kiferle C, Martinelli M, Salzano A, Gonzali S, Beltrami S, Salvadori P, Hora K, Holwerda H, Scaloni A, Perata P (2021). Evidence for a nutritional role of iodine in plants. Frontiers in Plant Science 12:616868. https://doi.org/10.3389/fpls.2021.616868

Kumar P, Hemantaranjan A (2017). Iodine: a unique element with special reference to soil-plant-air system. Advances in Plant Physiology 17: 314-328.

Li R, Liu H, Hong C, Dai Z, Liu J, Zhou J, Hu C, Weng H (2017). Iodide and iodate effects on the growth and fruit quality of strawberry. Journal of the Science of Food and Agriculture 97(1):230-235. https://doi.org/10.1002/jsfa.7719

Lira de la Mora J, Sierra E, Sánchez M, Meza J, Ramírez J (2017). Effect of high hydrostatic pressures on antioxidant properties of Mexican fig (Ficus carica L.) Paste. MOJ Bioorganic & Organic Chemistry 1(6):234-237. https://doi.org/10.15406/mojboc .2017.01.00040

Maglione G, Vitale E, Costanzo G, Polimeno F, Arena C, Vitale L (2022). Iodine Enhances the Nutritional Value but Not the Tolerance of Lettuce to NaCl. Horticulturae 8(7):662-672. https://doi.org/10.3390/horticulturae8070662

Medrano-Macias J. López-Caltzontzit MG, Rivas-Martinez EN, Narváez-Ortiz WA, Benavides Mendoza A, Martinez-Lagunes P (2021). Enhancement to Salt Stress Tolerance in Strawberry Plants by Iodine Products Application. Agronomy 11(3):602. https://doi.org/10.3390/agronomy11030602

Mohiuddin M, Irshad M, Ping A (2019). Bioavailability of iodine to mint from soil applied with selected amendments. Environmental Pollutants and Bioavailability 31:138-144. https://doi.org/10.1080/26395940.2019.1588077

Muniswamy D, Munaswamy V, Halappa R, Marigoudar S (2008). Impact of sodium cyanide on catalase activity in the freshwater exotic carp , Cyprinus carpio ( Linnaeus ). Pesticide Biochemistry and Physiology 92(1):15-18. https://doi.org/10.1016/j.pestbp.2008.03.013

Nascimento VL, Souza BCOQ, Lopes G, Guilherme LRG (2022). On the role of iodine in plants: A commentary on benefits of this element. Frontiers in Plant Science 13:836835-836835. https://doi.org/10.3389/fpls.2022.836835

Nickel K, Cunningham B (1969). Improved peroxidase assay method using leuco 2, 3′, 6-trichloroindophenol and application to comparative measurements of peroxidatic catalysis. Analytical Biochemistry 27(2):292-299. https://doi.org/10.1016/0003-2697(69)90035-9

Rami A, Saeid N, El Mzibri M, El Kari K, Idrissi M, Lahmam H, … Aguenaou H (2022). Prevalence of iodine deficiency among Moroccan women of reproductive age. Archives of Public Health 80(1):147. https://doi.org/10.1186/s13690-022-00901-7

Riyazuddin R, Singh K, Iqbal N (2022). Iodine: an emerging biostimulant of growth and stress responses in plants. Plant Soil 1-15. https://doi.org/10.1007/s11104-022-05750-5

Rösti J, Schumann M, Cléroux M, Lorenzini F, Zufferey V, Rienth M (2018). Effect of drying on tartaric acid and malic acid in Shiraz and Merlot berries. Australian Journal of Grape and Wine Research 24(4):421-429. https://doi.org/10.1111/ajgw.12344

Sabatino L, Di Gaudio F, Consentino B, Rouphael Y, El-Nakhel C, La Bella S, Vasto S, Mauro R, D’Anna F, Iapichino G (2021). Iodine biofortification counters micronutrient deficiency and improve functional quality of open field grown curly endive. Horticulturae 7:58. https://doi.org/10.3390/horticulturae7030058

Sabir A, Kafkas E, Tangolar S (2010). Distribution of major sugars, acids, and total phenols in juice of five grapevine (Vitis spp.) cultivars at different stages of berry development. Spanish Journal of Agricultural Research 8(2):425. https://doi.org/10.5424/sjar/2010082-1186

Sariñana-Navarrete M de los Á, Hernández L, Sánchez E, Reyes J, Murillo B, Preciado P (2021). Foliar fertilization of sodium selenite and its effects on yield and nutraceutical quality in grapevine. Revista de la Facultad de Agronomía de La Universidad del Zulia 38(4):806-824. https://doi.org/10.47280/RevFacAgron(LUZ).v38.n4

Saxton V, Creasy A, Paterson M (2009). Behavioral responses of European blackbirds and Australasian silvereyes to varying acid and sugar levels in artificial grapes. The American Journal of Enology and Viticulture 60:82-86. https://doi.org/10.5344/ajev.2009.60.1.82

Sorrenti S, Baldini E, Pironi D, Lauro A, D’Orazi V, Tartaglia F, Ulisse S (2021). Iodine: its role in thyroid hormone biosynthesis and beyond. Nutrients 13(12):4469. https://doi.org/10.3390/nu13124469

Sularz O, Smoleń S, Koronowicz A, Kowalska I, Leszczyńska T (2020). Chemical composition of lettuce (Lactuca sativa L.) biofortified with iodine by KIO3, 5-Iodo-, and 3.5-diiodosalicylic acid in a hydroponic cultivation. Agronomy 10(7):1022. https://doi.org/10.3390/agronomy10071022

Sularz O, Koronowicz A, Smoleń S, Kowalska I, Skoczylas Ł, Liszka-Skoczylas M, Pitala J (2021). Anti-and pro-oxidant potential of lettuce (Lactuca sativa L.) biofortified with iodine by KIO 3, 5-iodo-and 3, 5-diiodosalicylic acid in human gastrointestinal cancer cell lines. The Royal Society of Chemistry 11(44):27547-27560. https://doi.org/10.1039/d1ra04679a

Walle B, Adekunle A, Arowojolu A, Dugul T, Mebiratie A (2020). Micronutrients deficiency and their associations with pregnancy outcomes: a review. Nutrition and Dietary Supplements 12:237. https://doi.org/10.2147/NDS.S274646

Walteros I, Molano P, Almanza M, Gónzalez A (2012). Effect of pruning on chemical changes during fruit ripening of Vitis vinifera L. var. Cabernet Sauvig. Cultura Cientifica 10: 8-15.

Wang D, Wan S, Liu P, Meng F, Zhang X, Ren B, Liu L (2021). Relationship between excess iodine, thyroid function, blood pressure, and blood glucose level in adults, pregnant women, and lactating women: A cross-sectional study. Ecotoxicology and Environmental Safety 208:111706. https://doi.org/10.1016/j.ecoenv.2020.111706

World Health Organization (2007). Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers. Geneva: World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/43781/9789241595827eng.pdf

Published

2023-02-15

How to Cite

RAMÍREZ-GOTTFRIED, V. B., FORTIS-HERNÁNDEZ, M., GONZÁLEZ-AVALOS, R., & PRECIADO-RANGEL, P. (2023). Iodine application in Vitis vinifera L. cv. ‘Cabernet Sauvignon’ improve bioactive compounds and enzymatic activity in berries. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 13074. https://doi.org/10.15835/nbha51113074

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha51113074

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.