Iodine application in Vitis vinifera L. cv. ‘Cabernet Sauvignon’ improve bioactive compounds and enzymatic activity in berries
DOI:
https://doi.org/10.15835/nbha51113074Keywords:
agronomic biofortification, bioactive compounds, Vitis vinifera L., yieldAbstract
Iodine (I) deficiency disorders represent a worldwide public health problem, with at least 1.9 million people estimated to have an unsatisfactory intake of this trace element. I content in plant foods is particularly low; however, it can be improved by biofortification. In this study, the effect of foliar fertilization with I (0, 0.25, 0.5, 0.75, 1.0, and 1.25 mg L-1) on yield, bioactive compound content, and bioaccumulation in grapevine berries was evaluated. Biofortification with I has positively modified yield, bioactive compound content and bioaccumulation. Intermediate doses (0.75 mg L-1) increased yield (57%), while high doses (1.25 mg L-1) decreased yield (28%) and incremented the phenols, flavonoids, antioxidant capacity, vitamin C, anthocyanin (50,34,31,71,26% respectively), catalase (73%) and peroxidase activity (57%), and their bioaccumulation in berries (59%). Agronomic biofortification with I is an alternative to increase yield, enzymatic and non-enzymatic antioxidants, as well as the concentration of this trace element in grape berries.
References
Anwar F, Omar Asar T, Al-Abassi F, Kumar V, Alhayyani S (2022). Natural sea salt in diet ameliorates better protection compared to table salt in the doxorubicin-induced cardiac remodelling. Journal of Taibah University for Science 16(1):1213-1224. https://doi.org/10.1080/16583655.2022.2154491
AOAC International (1990). Official Methods of Analysis. 15th Ed., Association of Official Analytical Chemists, Washington, DC. Official Method.
Barreto ML (2017). Desigualdades en Salud: una perspectiva global. Ciência & Saúde Coletiva 22(7):2097-2108. https://doi.org/10.1590/1413-81232017227.02742017
Blouin J, Guimberteau G (2003). Maduración y Madurez de la Uva. Mundiprensa. Madrid, España.
Brand-Williams W, Cuvelier M, Berset C (1995). Use of a free radical method to evaluate antioxidant activity. Food Science 28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Budke C, Dierend W, Schön H, Hora K, Mühling K, Daum D (2021). Iodine Biofortification of Apples and Pears in an Orchard Using Foliar Sprays of Different Composition. Frontier in Plant Science 12:638671. https://doi.org/10.3389/fpls.2021.638671
Budke C, Thor S, Mühling K, Broll G, Daum D (2020). Iodine biofortification of field-grown strawberries – approaches and their limitations. Scientia Horticulturae 269:109317. https://doi.org/10.1016/j.scienta.2020.109317
Cabeller C (2017). Cuál es el momento adecuado para la cosecha de la uva?. La Noche En Vino. Retrieved 2022 April 24 from https://lanocheenvino.com/2017/04/29/cual-es-el-momento-adecuado-para-la-cosecha-de-la-uva/
Cakmak I, Prom-U-Thai C, Guilherme G, Rashid A, Hora K, Yazici A, Ozturk L (2017). Iodine biofortification of wheat, rice and maize through fertilizer strategy. Plant and Soil 418(1):319-335. https://doi.org/10.1007/s11104-017-3295-9
Cesar J, Santos I, Black R, Chrestani M, Duarte F, Nilson E (2020). Iodine status of Brazilian school-age children: a national cross-sectional survey. Nutrients 12(4):1077. https://doi.org/10.3390/nu12041077
Consentino B, Rouphael Y, Ntatsi G (2022). Agronomic performance and fruit quality in reenhouse grown eggplant are interactively modulated by iodine dosage and grafting. Scientia Horticulturae 295:110891. https://doi.org/10.1016/j.scienta.2022.110891
Cortés C, Rodríguez M, Benavides A, García J, Tornero M, Sánchez P (2016). El yodo aumenta el crecimiento y la concentración de minerales en plántulas de pimiento morrón. Agrociencia 50(6):747-758.
Daum D (2021). Iodine biofortification of apples and pears in an orchard using foliar sprays of different composition. Frontiers in Plant Science 12:638671. https://doi.org/10.3389/fpls.2021.638671
David M, Munaswamy V, Halappa R, Marigoudar S (2008). Impact of sodium cyanide on catalase activity in the freshwater exotic carp, Cyprinus carpio (Linnaeus). Pesticide Biochemistry and Physiology 92(1):15-18. https://doi.org/10.1016/j.pestbp.2008.03.013
Dorey E, Fournier P, Léchaudel M, Tixier P (2016). A statistical model to predict titratable acidity of pineapple during fruit developing period responding to climatic variables. Scientia Horticulturae 210:19-24. https://doi.org/10.1016/j.scienta.2016.07.014
Duborská E, Urík M, Šeda M (2020). Iodine biofortification of vegetables could improve iodine supplementation status. Agronomy 10(10):1574. https://doi.org/10.3390/agronomy 10101574
Eastman CJ, Zimmermann MB (2018). The iodine deficiency disorders. In: Endotext Dartmouth MA. Available from: https://www.ncbi.nlm.nih.gov/books/NBK285556/
Franco-Bañuelos A, Hernández S, Contreras C, Carranza J, Carranza C (2019). Use of growth regulators on the total phenolic content and the antioxidant capacity of “red globe” grape. Agrociencia 53(6):881-894.
García-Fuentes JE, Herrera-Castellano BF, Rivas Martínez EN, Narváez Ortiz WA, Benavides-Mendoza A, Medrano-Macias J (2022). Outcomes of foliar iodine application on growth, minerals and antioxidants in tomato plants under salt stress. Folia Horticulturae 34(1):27-37. https://doi.org/10.2478/FHORT-2022-0003
García-Nava M (2009). Cuantificación de fenoles y flavonoides totales en extractos naturales. Universidad Autónoma de Querétaro Revista Academica 1:1-4. https://.uaq.mx/investigacion/difusion/.../56_IUAQGarciaNava.pdf
Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Aora P (2018). Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition 5(12). https://doi.org/10.3389/fnut.2018.00012
Gonzali S, Kiferle C, Perata P (2017). Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Current Opinion in Biotechnology 44(1):16-26. https://doi.org/:10.1016/j.copbio.2016.10.004
Halka M, Smolen S, Czernicka M, Klimek-Chodacka M, Pitala J, Tutaj K (2019). Iodine biofortification through expression of HMT, SAMT and S3H genes in Solanum lycopersicum L. Plant Physiology and Biochemistry 144:35-48. https://doi.org/10.1016/j.plaphy.2019.09.028
Halka M, Smoleń S, Ledwożyw I, Włodzimierz S (2020). Comparison of effects of potassium iodide and iodosalicylates on the antioxidant potential and iodine accumulation in young tomato plants. Journal of Plant Growth Regulation 39(1):282-295. https://doi.org/10.1007/s00344-019-09981-2
Halka M, Smoleń S, Ledwozyw-Smoleń I (2020). Antioxidant potential and iodine accumulation in tomato (Solanum lycopersicum L.) seedlings as the effect of the application of three different iodobenzoates. Folia Horticulturae 32(2):203-219. https://doi.org/10.2478/fhort-2020-0019
Hernández-Hernández H, Quiterio T, Cadenas G, Ortega H, Hernández A, De La Fuente M, Valdés J, Juárez A (2019). Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants 8(10):355. https://doi.org/10.3390/plants8100355
Huber K, Fernández J, Webb C, Rouzard K, Healy J, Tamura M, Pérez E (2021). AGSE: A novel grape seed extract enriched for PP2A activating flavonoids that combats oxidative stress and promotes skin health. Molecules 26(21):6351. https://doi.org/10.3390/molecules26216351
Incrocci L, Carmassi G, Maggini R, Poli C, Saidov D, Tamburini C, Kiferle C, Perata P, Pardossi A (2019). Iodine accumulation and tolerance in sweet basil (Ocimum basilicum L.) with green or purple leaves grown in floating system technique. Frontiers in Plant Science 10:1494. https://doi.org/10.3389/fpls.2019.01494
Kiferle C, Ascrizzi R, Martinelli M, Gonzali S, Mariotti L, Pistelli L, Perata P (2019). Effect of Iodine treatments on Ocimum basilicum L.: Biofortification, phenolics production and essential oil composition. PLoS One 14(12):1-23. https://doi.org/10.1371/journal.pone.0226559
Kiferle C, Martinelli M, Salzano A, Gonzali S, Beltrami S, Salvadori P, Hora K, Holwerda H, Scaloni A, Perata P (2021). Evidence for a nutritional role of iodine in plants. Frontiers in Plant Science 12:616868. https://doi.org/10.3389/fpls.2021.616868
Kumar P, Hemantaranjan A (2017). Iodine: a unique element with special reference to soil-plant-air system. Advances in Plant Physiology 17: 314-328.
Li R, Liu H, Hong C, Dai Z, Liu J, Zhou J, Hu C, Weng H (2017). Iodide and iodate effects on the growth and fruit quality of strawberry. Journal of the Science of Food and Agriculture 97(1):230-235. https://doi.org/10.1002/jsfa.7719
Lira de la Mora J, Sierra E, Sánchez M, Meza J, Ramírez J (2017). Effect of high hydrostatic pressures on antioxidant properties of Mexican fig (Ficus carica L.) Paste. MOJ Bioorganic & Organic Chemistry 1(6):234-237. https://doi.org/10.15406/mojboc .2017.01.00040
Maglione G, Vitale E, Costanzo G, Polimeno F, Arena C, Vitale L (2022). Iodine Enhances the Nutritional Value but Not the Tolerance of Lettuce to NaCl. Horticulturae 8(7):662-672. https://doi.org/10.3390/horticulturae8070662
Medrano-Macias J. López-Caltzontzit MG, Rivas-Martinez EN, Narváez-Ortiz WA, Benavides Mendoza A, Martinez-Lagunes P (2021). Enhancement to Salt Stress Tolerance in Strawberry Plants by Iodine Products Application. Agronomy 11(3):602. https://doi.org/10.3390/agronomy11030602
Mohiuddin M, Irshad M, Ping A (2019). Bioavailability of iodine to mint from soil applied with selected amendments. Environmental Pollutants and Bioavailability 31:138-144. https://doi.org/10.1080/26395940.2019.1588077
Muniswamy D, Munaswamy V, Halappa R, Marigoudar S (2008). Impact of sodium cyanide on catalase activity in the freshwater exotic carp , Cyprinus carpio ( Linnaeus ). Pesticide Biochemistry and Physiology 92(1):15-18. https://doi.org/10.1016/j.pestbp.2008.03.013
Nascimento VL, Souza BCOQ, Lopes G, Guilherme LRG (2022). On the role of iodine in plants: A commentary on benefits of this element. Frontiers in Plant Science 13:836835-836835. https://doi.org/10.3389/fpls.2022.836835
Nickel K, Cunningham B (1969). Improved peroxidase assay method using leuco 2, 3′, 6-trichloroindophenol and application to comparative measurements of peroxidatic catalysis. Analytical Biochemistry 27(2):292-299. https://doi.org/10.1016/0003-2697(69)90035-9
Rami A, Saeid N, El Mzibri M, El Kari K, Idrissi M, Lahmam H, … Aguenaou H (2022). Prevalence of iodine deficiency among Moroccan women of reproductive age. Archives of Public Health 80(1):147. https://doi.org/10.1186/s13690-022-00901-7
Riyazuddin R, Singh K, Iqbal N (2022). Iodine: an emerging biostimulant of growth and stress responses in plants. Plant Soil 1-15. https://doi.org/10.1007/s11104-022-05750-5
Rösti J, Schumann M, Cléroux M, Lorenzini F, Zufferey V, Rienth M (2018). Effect of drying on tartaric acid and malic acid in Shiraz and Merlot berries. Australian Journal of Grape and Wine Research 24(4):421-429. https://doi.org/10.1111/ajgw.12344
Sabatino L, Di Gaudio F, Consentino B, Rouphael Y, El-Nakhel C, La Bella S, Vasto S, Mauro R, D’Anna F, Iapichino G (2021). Iodine biofortification counters micronutrient deficiency and improve functional quality of open field grown curly endive. Horticulturae 7:58. https://doi.org/10.3390/horticulturae7030058
Sabir A, Kafkas E, Tangolar S (2010). Distribution of major sugars, acids, and total phenols in juice of five grapevine (Vitis spp.) cultivars at different stages of berry development. Spanish Journal of Agricultural Research 8(2):425. https://doi.org/10.5424/sjar/2010082-1186
Sariñana-Navarrete M de los Á, Hernández L, Sánchez E, Reyes J, Murillo B, Preciado P (2021). Foliar fertilization of sodium selenite and its effects on yield and nutraceutical quality in grapevine. Revista de la Facultad de Agronomía de La Universidad del Zulia 38(4):806-824. https://doi.org/10.47280/RevFacAgron(LUZ).v38.n4
Saxton V, Creasy A, Paterson M (2009). Behavioral responses of European blackbirds and Australasian silvereyes to varying acid and sugar levels in artificial grapes. The American Journal of Enology and Viticulture 60:82-86. https://doi.org/10.5344/ajev.2009.60.1.82
Sorrenti S, Baldini E, Pironi D, Lauro A, D’Orazi V, Tartaglia F, Ulisse S (2021). Iodine: its role in thyroid hormone biosynthesis and beyond. Nutrients 13(12):4469. https://doi.org/10.3390/nu13124469
Sularz O, Smoleń S, Koronowicz A, Kowalska I, Leszczyńska T (2020). Chemical composition of lettuce (Lactuca sativa L.) biofortified with iodine by KIO3, 5-Iodo-, and 3.5-diiodosalicylic acid in a hydroponic cultivation. Agronomy 10(7):1022. https://doi.org/10.3390/agronomy10071022
Sularz O, Koronowicz A, Smoleń S, Kowalska I, Skoczylas Ł, Liszka-Skoczylas M, Pitala J (2021). Anti-and pro-oxidant potential of lettuce (Lactuca sativa L.) biofortified with iodine by KIO 3, 5-iodo-and 3, 5-diiodosalicylic acid in human gastrointestinal cancer cell lines. The Royal Society of Chemistry 11(44):27547-27560. https://doi.org/10.1039/d1ra04679a
Walle B, Adekunle A, Arowojolu A, Dugul T, Mebiratie A (2020). Micronutrients deficiency and their associations with pregnancy outcomes: a review. Nutrition and Dietary Supplements 12:237. https://doi.org/10.2147/NDS.S274646
Walteros I, Molano P, Almanza M, Gónzalez A (2012). Effect of pruning on chemical changes during fruit ripening of Vitis vinifera L. var. Cabernet Sauvig. Cultura Cientifica 10: 8-15.
Wang D, Wan S, Liu P, Meng F, Zhang X, Ren B, Liu L (2021). Relationship between excess iodine, thyroid function, blood pressure, and blood glucose level in adults, pregnant women, and lactating women: A cross-sectional study. Ecotoxicology and Environmental Safety 208:111706. https://doi.org/10.1016/j.ecoenv.2020.111706
World Health Organization (2007). Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers. Geneva: World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/43781/9789241595827eng.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Valeria B. RAMÍREZ-GOTTFRIED, Manuel FORTIS-HERNÁNDEZ, Ramiro GONZÁLEZ-AVALOS, Pablo PRECIADO-RANGEL
This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.