Effect of viticultural practices on yield and volatile composition of ‘Cabernet Sauvignon’ grapes


  • Irma O. MAYA-MERAZ Autonomous University of Chihuahua, Faculty of Agrotechnological Sciences, Av. Universidad, Campus 1, C.P. 31530, Chihuahua, Chihuahua (MX)
  • Ramona PÉREZ-LEAL Autonomous University of Chihuahua, Faculty of Agrotechnological Sciences, Av. Universidad, Campus 1, C.P. 31530, Chihuahua, Chihuahua (MX)
  • Rodrigo ALONSO-VILLEGAS Autonomous University of Chihuahua, Faculty of Agrotechnological Sciences, Av. Universidad, Campus 1, C.P. 31530, Chihuahua, Chihuahua (MX)
  • Nora A. SALAS-SALAZAR Autonomous University of Chihuahua, Faculty of Agrotechnological Sciences, Av. Universidad, Campus 1, C.P. 31530, Chihuahua, Chihuahua (MX)




aroma compounds, berry quality, canopy management, Vitis vinifera


‘Cabernet Sauvignon’ is a vigorous grapevine that develops herbaceous aromas in grapes. Canopy management practices can impact grapevine physiology, and as consequence the photosynthesis, fruit yield, and grape composition, and improve the quality of the fruit. Leaf removals and apical leaf removals on grapevines have been shown to reduce herbaceous aromas. However, little is known, about the effect of the use of girdling on the concentration of volatile compounds in grapes. Thus, the objective of this study was to evaluate the effect of basal leaf removal (BLR), girdling, and girdling plus cutting the apical regions of the canopy (girdling + CAC), on the concentration of volatile compounds of ‘Cabernet Sauvignon’ grapes. Fruit yield, chemical composition, and volatile compounds were analysed in all treatments. Girdling + CAC showed a reduction in grape yield, and total acidity, however, increases in total soluble solids, and fruity aromas were observed in comparison to BLR and the control (no-canopy treatment). Controls showed the highest concentration of volatile compounds related to herbaceous and unripe fruit characteristics aromas. On the other hand, BLR showed increases in volatile compounds in the grapes related to floral character. These results suggest that grapevine canopy management modifies the chemical composition of ‘Cabernet Sauvignon’ grapes, and girdling techniques and increase the fruity aromas.


Abu-Zahra TR (2010). Berry size of Thompson seedless as influenced by the application of gibberellic acid and cane girdling. Pakistan Journal of Botany 42(3):1755-1760.

Alem H, Rigou P, Schneider R, Ojeda H, Torregrosa L (2019). Impact of agronomic practices on grape aroma composition: a review. Journal of the Science of Food and Agriculture 99(3):975-985. https://doi.org/10.1002/jsfa.9327

Almanza-Merchán PJ. Fisher G, Serrano-Cely PA, Balaguera-López HE, Galavis JA (2011). Effects of leaf removal and cluster thinning on yield and quality of grapes (Vitis vinifera L., Riesling × Silvaner) en Corrales, Boyacá (Colombia). Agronomía Colombiana 29:35-42.

Baumes RL, Bayonove C, Barrillere JM, Samson A, Cordonnier R (1989). La maceération pelliculaire dans la vinification en blanc. Incidence sur la composante volatile des vins. Oeno-One 28:31-48. https://doi.org/10.20870/oeno-one.1988.22.3.1733

Böttcher C, Boss PK, Harvey KE, Burbidge CA, Davies C (2017). Peduncle girdling of Shiraz (Vitis vinfera L.) bunches and sugar concentration at the time of girdling affect wine volatile compounds. Australian Journal of Grape and Wine Research 24:1-13. https://doi.org/10.1111/ajgw.12319

Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1996). Principles and practices of winemaking. 1st ed.Springer Science & Business Media.

Dixon J, Hewett EW (2000) Factors affecting apple aroma/flavor volatile concentration: a review. New Zealand Journal of Crop and Horticultural Science 28:155-173. https://doi.org/10.1080/01140671.2000.9514136

Du Plessis CS, Van Rooyen PC (1982). Grape maturity and wine quality. South African Journal of Enology and Viticulture 3(2):41-45. https://doi.org/10.21548/3-2-2380

Eltom M, Trought M, Winefield C (2013). The effect of cane girdling before budbreak on shoot growth, leaf area and carbohydrate content of Vitis vinifera L. Sauvignon blanc grapevines. Functional Plant Biology 40(7):749-757. https://doi.org/10.1071/FP12278

English JT, Bledsoe AM, Marois JJ (1990). Influence of leaf removal from the fruit cluster zone on the components of evaporative potential within grapevine canopies. Agriculture, Ecosystem and Environment 31:49-61. https://doi.org/10.1016/0167-8809(90)90154-6

Espino-Días M, Sepúlveda DR, González-Aguilar G, Olivas GI (2016). Biochemistry of Apple aroma: a review. Food Technology and Biotechnology 54:375-394. https://doi.org/10.17113/ftb.

Feng H, Yuan F, Skinkis PA, Qian MC (2015). Influence of cluster zone leaf removal on Pinot noir grape chemical and volatile composition. Food Chemistry 173:414-423. https://doi.org/10.1016/j.foodchem.2014.09.149

Ferrara G, Mazzeo A, Netti G, Pacucci C, Matarrese AMS, Cafagna I, Mastrorilli P, Vezzoso M, Gallo V (2014) Girdling, gibelleric acid, and forchlorfenuron: Effects on yield, quality, and metabolic profile of table grape cv. Italia. American Journal of Enology and Viticulture 65:381-387. https://doi.org/10.3389/fpls.2016.00620

Garde-Cerdán T, Gutiérrez-Gamboa G, Baroja E, Rubio-Bretón P, Pérez-Álvarez EP (2018). Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages. Food Research International 112:274-283. https://doi.org/10.1016/j.foodres.2018.06.048

Gatti M, Bernizzoni F, Civardi S, Poni S (2012). Effects of clusters thinning and preflowering leaf removal on growth and grape composition in cv. Sangiovese. American Journal of Enology and Viticulture 63:325-332. https://doi.org/10.5344/ajev.2012.11118

Grebneva Y, Bilogrevic E, Rauhut D, Hixson MH (2022). Impacts of photoselective bunch zone shading on the volatile composition and sensory attributes for Vitis vinifera L. cv. Riesling. OENO One 56(3):297-311. https://doi.org/10.20870/oeno-one.2022.56.3.5364

Gutiérrez-Gamboa G, Pérez-Álvarez EP, Rubio-Bretón P, Gardé-Cerdán T (2019). Changes on the grape volatile composition through elicitation with methyl jasmonate, chitosan, and yeast extract in Tempranillo (Vitis vinifera L.) grapevines. Scientia Horticulturae 244:257-262. https://doi.org/10.1016/j.scienta.2018.09.063

Intrigliolo DS, Llacer E, Revert J, Esteve MD, Climent MD, Palau D, Gómez I (2014). Early defoliation reduces cluster compactness and improves grape composition in Mandó an autochthonous cultivar of Vitis vinifera from southeastern Spain. Scientia Horticulturae 167:71-75. https://doi.org/10.1016/j.scienta.2013.12.036

Larsen M, Poll L (1992). Odor thresholds of some important aroma compounds in strawberries. European Food Research & Technology 19:120-123. https://doi.org/10.1007/BF01201770

Li KT, Chang JC, Wang LL, Liu YT, Lee CL (2015). Girdling improved berry coloration in summer but suppressed return growth in the following spring in 'Kyoho' grapevines cultivated in the subtropical double cropping system. VITIS Journal of Grapevine Research 54:59-63. https://doi.org/10.5073/vitis.2015.54.59-63

Matsumoto K, Sato S, Fujita T, Hayashida T (2021). Girdling Treatment to Reduce Vigor and Increase Production of High-quality Yellow-skinned ‘Koukou’Apples. The Horticulture Journal 90(1):31-37. https://doi.org/10.2503/hortj.UTD-223

Mauriello G, Capec A, D'auria M, Garde-Cerdán T, Romano P (2009). SPME–GC method as a tool to differentiate VOC profiles in Saccharomyces cerevisiae wine yeasts. Food Microbiology 26(3):246-252. https://doi.org/10.1016/j.fm.2009.01.003

Maya-Meraz IO, Leal RP (2018). ¿Qué relación existe entre la calidad aromática del vino y la bioquímica de la vid?. Tecnociencia Chihuahua 12(3):134-142. https://doi.org/10.54167/tch.v12i3.187

Meng J, Fang Y, Gao J, Zhan A, Liu J, Guo Z, Zhang Z, Li H (2011). Changes in aromatic compounds of Cabernet Sauvignon wines during ageing stainless steel tanks. African Journal of Biotechnology 10:11640-11647. https://doi.org/10.5897/AJB.9000094

Moreno D, Valdés E, Uriarte D, Gamero E, Talaverano I, Vilanova M (2016). Early leaf removal applied in warm climatic conditions: impact on Tempranillo wine volatiles. Food Research International 98:50-58. https://doi.org/10.1016/j.foodres.2016.09.017

Mosetti D, Herrera JC, Sabbatini P, Green A, Alberti G, Peterlunger E, Lisjak K, Castellarin SD (2016). Impact of leaf removal after berry set on fruit composition and bunch rot in Sauvignon Blanc. Vitis 55:57-64. https://doi.org/10.5073/vitis.2016.55.57-64

Mozzon M, Savini S, Boselli E, Thorngate JH (2016). The herbaceous character of wines. Italian Journal of Food Science 25:190-207. https://doi.org/10.14674/1120-1770/ijfs.v304

Niu Y, Zhang X, Xiao Z, Song S, Eric K, Jia Ch, Yu H, Zhu J (2011). Characterization of odor-active compounds of various cherry wines by gas chromatography-mass spectrometry, gas chromatography olfactometry and their correlation with sensory attributes. Journal of Chromatography B 879:2287-2293. https://doi.org/10.1016/j.jchromb.2011.06.015

Noble AC, Elliott-Fisk DL, Allen MS (2012). Vegetative flavor and methoxypyrazines in Cabernet Sauvignon. In: ACS Symposium series (Ed). Fruit Flavors. ACS Publications, Chicago in press pp 226-234.

Palomo ES, Díaz-Maroto MC, Viñas MG, Soriano-Pérez A, Pérez-Coello MS (2007). Aroma profile of wines from Albillo and Muscat grape varieties at different stages of ripening. Food Control 18(5):398-403. https://doi.org/10.1016/j.foodcont.2005.11.006

Piccolo EL, Araniti F, Landi M, Massai R, Guidi L, Abenavoli MR, Remorini D (2021). Girdling stimulates anthocyanin accumulation and promotes sugar, organic acid, amino acid level and antioxidant activity in red plum: An overview of skin and pulp metabolomics. Scientia Horticulturae 280:109907. https://doi.org/10.1016/j.scienta.2021.109907

Poni S, Casalini L, Bernizzoni F, Civardi S, Intrieri C (2006). Effects of early defoliation on shoot photosynthesis, yield components, and grape composition. American Journal of Enology and Viticulture 57:397-407. https://doi.org/10.5344/ajev.2006.57.4.397

Reynolds A, Savigny Ch (2004). Influence of girdling and gibberellic acid on yield components, fruit composition, and vestigial seed formation of ‘Sovereign Coronation’ table grapes. Hortscience 39:541-544. https://doi.org/10.21273/HORTSCI.39.3.541

Ryona IA, Pan BS, Intrigliolo DS, Lakso AN, Sacks GL (2008). Effects of clusters light exposure on 3-isobutyl-2-methoxypyrazine accumulation and degradation patterns in red wine grapes (Vitis vinifera L. cv. Cabernet franc). Journal of Agricultural and Food Chemistry 56:10838-10846. https://doi.org/10.1021/jf801877y

Soltekin O, Candemir A, Atlindisli A (2016). Effects of cane girdling on yield, fruit quality and maturation of (Vitis vinifera L.) cv. Flame Seedless. BIO Web of Conferences 7:1-5. https://doi.org/10.1051/bioconf/20160701032

Soltekin O, Teker T, Erdem A, Kacar E, Altindişli A (2015). Response of ‘Red Globe’ (Vitis vinifera L.) to cane girdling. BIO Web of Conferences 5:1-4. https://doi.org/10.1051/bioconf/20150501019

Song CH, Zuo L, Shi P, Meng J, Wang Y, Zhang Z, Xi Z (2015). Aroma characterization of Chinese Hutai-8 wines: comparing with Merlot and Cabernet Sauvignon wines. Scientia Horticulturae 194:237-345. https://doi.org/10.1016/j.scienta.2015.08.026

Song J, Smart R, Wang R, Wang H, Dambergs B, Sparrow A, Qian MC (2015). Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine. Food Chemistry 17:424-431. https://doi.org/10.1016/j.foodchem.2014.09.150

Spayd SE, Tarara JM, Mee DL, Ferguson JC (2002). Separation of sunlight and temperature Effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture 53:171-182. https://doi.org/10.5344/ajev.2002.53.3.171

Verzera A, Tripodi G, Dima G, Condurso C, Scacco A, Cincotta F, Sparacio A (2016). Leaf removal and wine composition of Vitis vinifera L. cv. Nero d'Avola: the volatile aroma constituents. Journal of the Science of Food and Agriculture 96:150-159. https://doi.org/10.1002/jsfa.7075

Viguié V, Lecocq F, Touzard JM (2014). Viticulture and adaptation to climate change. Journal International des Sciences de la Vigne et du Vin 55-60.

Vilanova M, Diago MP, Genisheva Z, Oliveira JM, Tardaguila J (2011). Early leaf removal impact on volatile composition of Tempranillo wines. Journal of Science and Food Agriculture 92:935-942. https://doi.org/10.1002/jsfa.4673

Williams LE, Retzlaff WA, Yang W, Biscay PJ, Ebisuda N (2000). Effect of girdling on leaf gas exchange, water status, and non-structural carbohydrates of field-growth Vitis vinifera L. (cv. Flame Seedless). American Journal of Enology and Viticulture 51:49-54. https://doi.org/10.5344/ajev.2000.51.1.49

Yao Y, Chen K, Yang X, Li J, Li X (2021). Comparative study of the key aromatic compounds of Cabernet Sauvignon wine from the Xinjiang region of China. Journal of Food Science and Technology 58(6):2109-2120. https://doi.org/10.1007/s13197-020-04720-y

Zhang M, Xu Q, Duan C, Qu W, Wu Y (2007). Comparative study of aromatic compounds in Young red wines from Cabernet Sauvignon, Cabernet Franc, and Cabernet Gernischet varieties in China. Food Chemistry and Toxicology 72:248-252. https://doi.org/10.1111/j.1750-3841.2007.00357.x

Zhang P, Wu X, Needs S, Liu D, Fuentes S, Howell K (2017). The influence of apical and basal defoliation on the canopy structure and biochemical composition of Vitis vinifera cv. Shiraz grapes and wine. Frontiers in Chemistry 5:1-48. https://doi.org/10.3389/fchem.2017.00048

Zhang Y, Mulpuri S, Liu A (2016). High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop. Photosynthesis Research 128:125-140. https://doi.org/10.1007/s11120-015-0206-x



How to Cite

MAYA-MERAZ, I. O., PÉREZ-LEAL, R., ALONSO-VILLEGAS, R., & SALAS-SALAZAR , N. A. (2023). Effect of viticultural practices on yield and volatile composition of ‘Cabernet Sauvignon’ grapes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(2), 13073. https://doi.org/10.15835/nbha51213073



Research Articles
DOI: 10.15835/nbha51213073

Most read articles by the same author(s)

<< < 1 2