Research progress of the Elongator complex in plant
DOI:
https://doi.org/10.15835/nbha51113058Keywords:
DNA methylation, Elongator complex, histone acetylation, RNA polymerase II, tRNA modificationAbstract
The Elongator complex consists of six subunits (ELP1-ELP6), where ELP1-ELP3 forms the core subcomplex and ELP4-ELP6 forms the auxiliary subcomplex. Deletion of any of the six subunits results in an almost identical phenotype, suggesting that all six subunits are essential for cellular function. All six subunits are evolutionarily conserved in terms of sequence and their interactions with other subunits. The most striking features are the structural conservation of the protein complexes and the phenotypic similarity caused by loss-of-function mutations in any protein subunit. Similar to elongation factors in translation, there is a strong interaction between the Elongator complex and RNA polymerase II during transcription. The Elongator complex is also involved in a variety of cellular pathways, including histone modification/acetylation, DNA methylation, tRNA nucleoside modification, etc. Here, we summarized the functions and mechanisms of the Elongator complex in plant growth and development, molecular pathways, and gene regulation. In this way, we aimed to provide a reference for an in-depth study of the Elongator complex.
References
Abbassi NE, Biela A, Glatt S, Lin TY (2020). How elongator acetylates tRNA bases. International Journal of Molecular Sciences 21(21):8209. https://doi.org/10.3390/ijms21218209
Abdel-Fattah W, Jablonowski D, Di Santo R, Thuring KL, Scheidt V, Hammermeister A, Stark MJ (2015). Phosphorylation of Elp1 by Hrr25 is required for elongator-dependent tRNA modification in yeast. PLoS Genetics 11(1):e1004931. https://doi.org/10.1371/journal.pgen.1004931
Bauer F, Matsuyama A, Candiracci J, Dieu M, Scheliga J, Wolf DA, Hermand D (2012). Translational control of cell division by Elongator. Cell Reports 1(5):424-433. https://doi.org/10.1016/j.celrep.2012.04.001
Chen C, Huang B, Eliasson M, Ryden P, Bystrom AS (2011). Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. PLoS Genetics 7(9):e1002258. https://doi.org/10.1371/journal.pgen.1002258
Chen Z, Zhang H, Jablonowski D, Zhou X, Ren X, Hong X, Gong Z (2006). Mutations in ABO1/ELO2, a subunit of Holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Molecular and Cellular Biology 26(18):6902-6912. https://doi.org/10.1128/MCB.00433-06
Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Nguyen L (2009). Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136(3):551-564. https://doi.org/10.1016/j.cell.2008.11.043
Dalwadi U, Yip, CK (2018). Structural insights into the function of Elongator. Cellular and Molecular Life Sciences 75(9):1613-1622. https://doi.org/10.1007/s00018-018-2747-6
Dauden MI, Jaciuk M, Weis F, Lin TY, Kleindienst C, Abbassi N, Glatt S (2019). Molecular basis of tRNA recognition by the Elongator complex. Science Advances 5(7):w2326. https://doi.org/10.1126/sciadv.aaw2326
Dauden MI, Kosinski J, Kolaj-Robin O, Desfosses A, Ori A, Faux C, Muller CW (2017). Architecture of the yeast Elongator complex. EMBO Reports 18(2):264-279. https://doi.org/10.15252/embr.201643353
DeFraia CT, Zhang X, Mou Z (2010). Elongator subunit 2 is an accelerator of immune responses in Arabidopsis thaliana. Plant Journal 64(3):511-523. https://doi.org/10.1111/j.1365-313X.2010.04345.x
Esberg A, Huang B, Johansson MJO, Byström AS (2006). Elevated levels of two tRNA species bypass the requirement for Elongator complex in transcription and exocytosis. Molecular Cell 24(1):39-148. https://doi.org/10.1016/j.molcel.2006.07.031
Falcone A, Nelissen H, Fleury D, Van Lijsebettens M, Bitonti MB (2007). Cytological Investigations of the Arabidopsis thaliana elo1 mutant give new insights into leaf lateral growth and elongator function. Annals of Botany 100(2):261-270. https://doi.org/10.1093/aob/mcm102
Fang X, Cui Y, Li Y, Qi Y (2015a). Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis. Nature Plants 1:15075. https://doi.org/10.1038/nplants.2015.75
Fellows J, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2000). The Elp2 subunit of elongator and elongating RNA polymerase II holoenzyme is a WD40 repeat protein. Journal of Biological Chemistry 275(17):12896-12899. https://doi.org/10.1074/jbc.275.17.12896
Fernandez-Vazquez J, Vargas-Perez I, Sanso M, Buhne K, Carmona M, Paulo E, Hidalgo E (2013). Modification of tRNA(Lys) UUU by elongator is essential for efficient translation of stress mRNAs. PLoS Genetics 9(7):e1003647. https://doi.org/10.1371/journal.pgen.1003647
Fichtner L, Frohloff F, Bürkner K, Larsen M, Breunig KD, Schaffrath R (2002). Molecular analysis of KTI12/TOT4, a Saccharomyces cerevisiae gene required for Kluyveromyces lactis zymocin action. Molecular Microbiology 43(3):783-791. https://doi.org/10.1046/j.1365-2958.2002.02794.x
Fichtner L, Frohloff F, Jablonowski D, Stark MJ, Schaffrath R (2002). Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity. Molecular Microbiology 45(3):817-826. https://doi.org/10.1046/j.1365-2958.2002.03055.x
Fichtner L, Jablonowski D, Schierhorn A, Kitamoto HK, Starkm MJR, Schaffrath R (2003). Elongator's toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Molecular Microbiology 49(5):1297-1307. https://doi.org/10.1046/j.1365-2958.2003.03632.x
Fichtner L, Schaffrath R (2002). KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Molecular Microbiology 44(3):865-875. https://doi.org/10.1046/j.1365-2958.2002.02928.x
Frohloff F (2001). Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin. The EMBO Journal 20(8):1993-2003. https://doi.org/10.1093/emboj/20.8.1993
Huang B (2005). An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11(4):424-436. https://doi.org/10.1261/rna.7247705
Huang B, Lu J, Bystrom AS (2008). A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14(10):2183-2194. https://doi.org/10.1261/rna.1184108
Jarosz M, Van Lijsebettens M, Woloszynska M (2020). Plant Elongator—protein complex of diverse activities regulates growth, development, and immune responses. International Journal of Molecular Sciences 21(18):6912. https://doi.org/10.3390/ijms21186912
Jia Y, Tian H, Li H, Yu Q, Wang L, Friml J, Ding Z (2015). The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development. Journal of Experimental Botany 66(15):4631-4642. https://doi.org/10.1093/jxb/erv230
Karlsborn T, Tukenmez H, Mahmud AK, Xu F, Xu H, Bystrom AS (2014). Elongator, a conserved complex required for wobble uridine modifications in eukaryotes. RNA Biology 11(12):1519-1528. https://doi.org/10.4161/15476286.2014.992276
Kojima S, Iwasaki M, Takahashi H, Imai T, Matsumura Y, Fleury D, Machida C (2011). Asymmetric leaves2 and Elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana. Plant Cell Physiology 52(8):1259-1273. https://doi.org/10.1093/pcp/pcr083
Leitner J, Retzer K, Malenica N, Bartkeviciute R, Lucyshyn D, Jager G, Luschnig C (2015). Meta-regulation of Arabidopsis auxin responses depends on tRNA maturation. Cell Reports 11(4):516-526. https://doi.org/10.1016/j.celrep.2015.03.054
Li Q, Fazly AM, Zhou H, Huang S, Zhang Z, Stillman B (2009). The elongator complex interacts with PCNA and modulates transcriptional silencing and sensitivity to DNA damage agents. PLoS Genetics 5(10):e1000684. https://doi.org/10.1371/journal.pgen.1000684
Lin FJ, Shen L, Jang CW, Falnes PO, ZhangY (2013). Ikbkap/Elp1 deficiency causes male infertility by disrupting meiotic progression. PLoS Genetics 9(5):e1003516. https://doi.org/10.1371/journal.pgen.1003516
Lin Z, Zhao W, Diao W, Xie X, Wang Z, Zhang J, Long J (2012). Crystal Structure of Elongator Subcomplex Elp4–6. Journal of Biological Chemistry 287(25):21501-21508. https://doi.org/10.1074/jbc.M112.341560
Lu J, Huang B, Esberg A, Johansson MJ, Bystrom AS (2005). The Kluyveromyces lactis gamma-toxin targets tRNA anticodons. RNA 11(11):1648-1654. https://doi.org/10.1261/rna.2172105
Matsumoto H, Yasui Y, Ohmori Y, Tanaka W, Ishikawa T, Numa H, Hirano HY (2020). CURLED LATER1 encoding the largest subunit of the Elongator complex has a unique role in leaf development and meristem function in rice. The Plant Journal 104(2):351-364. https://doi.org/10.1111/tpj.14925
Mehlgarten C, Jablonowski D, Breunig KD, Stark MJ, Schaffrath R (2009). Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Molecular Microbiology 73(5):869-881. https://doi.org/10.1111/j.1365-2958.2009.06811.x
Mehlgarten C, Jablonowski D, Wrackmeyer U, Tschitschmann S, Sondermann D, Jäger G, Breunig KD (2010). Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Molecular Microbiology 76(5):1082-1094. https://doi.org/10.1111/j.1365-2958.2010.07163.x
Mehlgarten C, Schaffrath R (2003). Mutant casein kinase I (Hrr25p/Kti14p) abrogates the G1 cell cycle arrest induced by Kluyveromyces lactis zymocin in budding yeast. Molecular Genetics and Genomics 269(2):188-196. https://doi.org/10.1007/s00438-003-0807-5
Miskiewicz K, Jose LE, Bento-Abreu A, Fislage M, Taes I, Kasprowicz J, Verstreken P (2011). ELP3 controls active zone morphology by acetylating the ELKS family member Bruchpilot. Neuron 72(5):776-788. https://doi.org/10.1016/j.neuron.2011.10.010
Myat AA, Zhou Y, Gao Y, Zhao X, Liang C, Abid MA, Meng Z (2022). Overexpression of GhKTI12 enhances seed yield and biomass production in Nicotiana tabacum. Genes 13(3): 426. https://doi.org/10.3390/genes13030426
Nelissen H, De Groeve S, Fleury D, Neyt P, Bruno L, Bitonti MB, Van Lijsebettens M (2010). Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proceedings of the National Academy of Sciences of the United States of America 07(4):1678-1683. https://doi.org/10.1073/pnas.0913559107
Nelissen H, Fleury D, Bruno L, Robles P, De Veylder L, Traas J, Van Lijsebettens M (2005). The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proceedings of the National Academy of Sciences of the United States of America 102(21):7754-7759. https://doi.org/10.1073/pnas.0502600102
Otero G, Fellows J, Li Y, De Bizemont T, Dirac AM, Gustafsson CM, Svejstrup JQ (1999). Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Molecular Cell 3(1):109-118. https://doi.org/10.1016/s1097-2765(00)80179-3
Petrakis TG, Søgaard TMM, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2005). Physical and functional interaction between Elongator and the Chromatin-associated Kti12 protein. Journal of Biological Chemistry 280(20):19454-19460. https://doi.org/10.1074/jbc.M413373200
Pokholok DK, Hannett NM, Young RA (2002). Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Molecular Cell 9(4):799-809. https://doi.org/10.1016/s1097-2765(02)00502-6
Selvadurai K, Wang P, Seimetz J, Huang RH (2014). Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism. Nature Chemical Biology 10(10):810-812. https://doi.org/10.1038/nchembio.1610
Skylar A, Matsuwaka S, Wu X (2013). ELONGATA3 is required for shoot meristem cell cycle progression in Arabidopsis thaliana seedlings. Developmental Biology 382(2): 436-445. https://doi.org/10.1016/j.ydbio.2013.08.008
Stirnimann CU, Petsalaki E, Russell RB, Müller CW (2010). WD40 proteins propel cellular networks. Trends in Biochemical Sciences 35(10):565-574. https://doi.org/10.1016/j.tibs.2010.04.003
Versées W, De Groeve S, Van Lijsebettens M (2010). Elongator, a conserved multitasking complex? Molecular Microbiology 76(5):1065-1069. https://doi.org/10.1111/j.1365-2958.2010.07162.x
Wang C, Ding Y, Yao J, Zhang Y, Sun Y, Colee J, Mou Z (2015). Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. The Plant Journal 83(6):1019-1033. https://doi.org/10.1111/tpj.12946
Wang K, Rong W, Liu Y, Li H, Zhang Z (2020). Wheat Elongator subunit 4 is required for epigenetic regulation of host immune response to Rhizoctonia cerealis. The Crop Journal 8(4):565-576. https://doi.org/10.1016/j.cj.2019.11.005
Winkler GS, Petrakis TG, Ethelberg S, Tokunaga M, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2001). RNA Polymerase II Elongator Holoenzyme Is Composed of Two Discrete Subcomplexes. Journal of Biological Chemistry 276(35):32743-32749. https://doi.org/10.1074/jbc.M105303200
Woloszynska M, Gagliardi O, Vandenbussche F, De Groeve S, Alonso Baez L, Neyt P, Van Lijsebettens M (2018). The Elongator complex regulates hypocotyl growth in darkness and during photomorphogenesis. Journal of Cell Science 131(2):s203927. https://doi.org/10.1242/jcs.203927
Xu D, Huang W, Li Y, Wang H, Huang H, Cui X (2012). Elongator complex is critical for cell cycle progression and leaf patterning in Arabidopsis. Plant Journal 69(5): 792-808. https://doi.org/10.1111/j.1365-313X.2011.04831.x
Zhou X, Hua D, Chen Z, Zhou Z, Gong Z (2009). Elongator mediates ABA responses, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis. The Plant Journal 60(1):79-90. https://doi.org/10.1111/j.1365-313X.2009.03931.x
Zhu M, Li Y, Chen G, Ren L, Xie Q, Zhao Z, Hu Z (2015). Silencing SlELP2L, a tomato Elongator complex protein 2-like gene, inhibits leaf growth, accelerates leaf, sepal senescence, and produces dark-green fruit. Scientific Reports 5:7693. https://doi.org/10.1038/srep07693
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ji XIANGZHUO, Zhuang ZELONG, Wang YINXIA, Zhang YUNFANG, Peng YUNLING
This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.