Meiotic behavior of two grapevine somatic mutants with ornamental potential

Authors

  • Neiva I. PIEROZZI Instituto Agronômico de Campinas (IAC), Centro de Recursos Genéticos Vegetais, 1481 Barão de Itapura Ave., Campinas (BR)
  • Mara FERNANDES MOURA Instituto Agronômico de Campinas (IAC), Centro Avançado de Pesquisas e Desenvolvimento de Frutas, 1500 Luís Pereira dos Santos Ave., Jundiaí (BR)

DOI:

https://doi.org/10.15835/nbha51213030

Keywords:

microsporogenesis, ‘Niagara Steck’, ‘Niagara Variegada’, ornamental grapevines, spontaneous mutants, Vitis

Abstract

‘Niagara Steck’ and ‘Niagara Variegada’ are two grapevine varieties that arose spontaneously as somatic mutants of ‘Niagara Rosada’. Berries characterize ‘Niagara Steck’ at young stages exhibiting a remarkable brown reticulated structure on the epidermis which develops into a brown-bronze russet-like structure as the berries ripe. The mature berries have strongly acidic flesh. ‘Niagara Variegada’ shows notable variegation in leaves and berries. Meiotic studies were carried out to ascertain if the mutant phenotypes could be related to any change in chromosome number, structure or other irregularity. Floral buds of both varieties at different developmental stages were collected and fixed for cytological analyses. Chromosome counts at diakinesis/metaphase I showed n=19 bivalents for both varieties. Univalent, trivalent, tetravalent chromosomes or chain configuration were not recorded ruling out the possibility of any alteration in the chromosome number or structure in both mutant varieties. However, low percentages of meiotic irregularities were recorded such as chromosome stickiness, laggards, non-oriented chromosomes, precocious chromosome segregation, tetrads with one microcyte, microspore fusion, and tetrad degeneration. The total percentage of abnormalities was higher in ‘Niagara Variegada’ (19.68%) than in ‘Niagara Steck’ (14.40%) which may have contributed to a lower percentage of pollen fertility (79.80%) when compared to ‘Steck’ (90.74%). The aforementioned varieties can be propagated by hardwood cuttings and constitute an interesting option for ornamentation of home backyards, patios, and gardens with the advantage that ‘Niagara Variegada’ bearing sweet edible berries.

References

Adeleke MTV, Pillay M, Okoli BE (2004). Relationships between meiotic irregularities and fertility in diploid and triploid Musa L. Cytologia 69(4):387-393. https://doi.org/10.1508/cytologia.69.387

Amato A, Cavallini E, Walker AR, Pezzotti M, Bliek M, Quattrocchio F, ... Tornielli GB (2019). The MYB-drive MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. The Plant Journal 99(6):1220-1241. https://doi.org/10.1111/tpj.14419

Angelotti-Mendonça J, Moura MF, Scarpare Filho JA, Vedoato BTF, Tecchio MA (2018). Rootstock on production and quality of ‘Niagara Rosada’ grapevine. Revista Brasileira de Fruticultura 40(4):e-023 https://dx.doi.org/101590/0100-29452018023

Antcliff AJ, Webster WJ (1962). Bruce’s sport - a mutant of the Sultana. Australian Journal of Experimental Agriculture and Animal Husbandry 2(5):97-100. https://doi.org/10.1071/EA9620097

Ar-Rushdi AH (1957). The cytogenetics of variegation in a species hybrid in Nicotiana. Genetics 42(3):312-325. https://doi.org/10.1093/genetics/42.3.312

Athoo TO, Winkler A, Knoche M (2020). Russeting in ‘Apple’ mango: triggers and mechanisms. Plants 9:898 https://www.researchgate.net/publication/343006929

Chinnappa CC (1982). Cytology of some variegated forms of Trillium grandiflorum (Liliaceae). Caryologia 35(1):23-32 https://doi.org/10.1080/00087114.1982.10796919

D’Cruz R, Rao GB (1977). Cytogenetic studies in two guava aneuploids. Journal of Indian Botanical Society 41(2):316-321.

Dangl GS, Raiche R, Sim S, Yang J, Golino DA (2010). Genetic composition of the ornamental grape ‘Roger’s Red’. American Journal of Enology and Viticulture 61(2): 266-271. http://iv.ucdavis.edu/files/29235.pdf

Ferrara G, Gallotta A, Pacucci C, Matarrese MAS, Mazzeo A, Giancaspro A, ... Colelli G (2017). The table grape ‘Victoria’ with a long-shaped berry: a potential mutation with attractive characteristics for consumers. Journal of the Science of Food and Agriculture 97(15):5398-5405. https://doi.org/10.1002/jsfa.8429

Filler DM, Luby JJ, Ascher PD (1994). Incongruity in the interspecific crosses of Vitis L. Morphological abnormalities in the F2 progeny. Euphytica 78(3):227-237. https://doi.org/10.1007/BF00027521

Goffinet M, Pearson R (1991). Anatomy of russeting induced in Concord grape berries by the fungicide chlorothalonil. American Journal of Enology and Viticulture 42(4):281-289.

Gupta SB (1968). The unstable behavior of a chromosomal fragment of Nicotiana plumbaginifolia responsible for chlorophyll variegation in N. tabacum. Genetics 59(4):453-63. https://doi.org/10.1093/genetics/59.4.453

Hedrick UP (1919). Manual of American grape-growing. MacMillan Co., New York.

Kaur D, Singhal VK (2010). Chromosome number, meiosis and pollen fertility in Vicia rigidula Royle and V. tenera Grah. from cold desert regions of India. Cytologia 75(1):9-14. https://doi.org/10.1508/cytologia.75.9

Kaur D, Kumar P, Singhal VK (2013). Chromosome counts and cytomixis in two species of Trigonella L. Cytologia 78(3):235-242. https://doi.org/10.1508/cytologia.78.235

Knight TA (1808). On the variegation of plants. Transactions of the Linnean Society of London 9(1):268-271. https://doi.org/10.1111/j.1096-3642.1818.tb00344.x

Kuksova VB, Piven NM, Gleba YY (1997). Somaclonal variation and in vitro induced mutagenesis in grapevine. Plant Cell, Tissue and Organ Culture 49(1):17-27. https://doi.org/10.1023/A:1005830305206

Lawo NC, Lawo J-P, Plenk S, Schrank E, Forneck A (2013). Vitis coignetiae (Pulliat) shows partial resistance against leaf-feeding phylloxera and may serve to preserve abandoned vineyard habitats. Mitteilungen Klosterneuburg, Rebe und Wein, Obstbau und Früchteverwertung 63(3):132-138.

Legay S, Guerriero G, André C, Guignard C, Cocco E, Charton S, … Hausman J-F (2016). MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins. New Phytologist 212(4):977-991. https://doi.org/10.1111/nph.14170

Ma C, Wang X, Yu M, Zheng X, Sun Z, Liu X, … Wang C (2021). PpMYB36 encodes a MYB-type transcription factor that is involved in russet skin coloration in pear (Pyrus pyrifolia). Frontiers in Plant Science 12:776816. https://doi.org/10.3389/fpls.2021.776816

Maia JDG (2012). Origem da videira Niágara [Origin of the grapevine Niagara]. In: Maia JDG, Camargo UA (Eds). O cultivo da videira Niágara no Brasil [Niagara vineyard cultivation in Brazil]. Embrapa, Brasilia pp15-22.

Malinowski E (1935). Studies on unstable characters in petunia. I. The extreme flower types of the unstable race with mosaic color patterns. Genetics 20(4):342-3560 https://doi.org/1093/genetics/20.4.342

Marcotrigiano M (1997) Chimeras and variegation: patterns of deceit. HortScience 32(5):773-784. https://doi.org/10.21273/HORTSCI.32.5.773

Mortensen JA, Harris JW, Hopkins D, Andersen PC (1994). ‘Southern Home’: an interspecific hybrid grape with ornamental value. HortScience 29(11):1371-1372. https://doi.org/10.21273/HORTSCI.29.11.1371

Olson J, Clark M (2021). Characterization of anatomical and physiological effects of variegation mutation on grapevine. HortScience 56(10):1251-1257. https://doi.org/10.21273/HORTSCI15929-21

Olson J, Zou C, Karn A, Reisch B, Cadle-Davidson L, Su Q, Clark M (2022). Genetic analyses for leaf variegation in hybrid grape population (Vitis spp.) reveals two loci, Lvar1 and Lvar2. HortScience 57(11):1416-1423. https://doi.org/10.21273/HORTSCI16763-22

Pierozzi NI, Moura MF (2014). Cytological analyses in ‘Niagara Branca’ grape and in its somatic mutant ‘Niagara Rosada’. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42(2):460-465. https://doi.org/10.15835/nbha4229540

Pires EJP, Pommer CV, Passos IRS, Terra MM (1988). Mutante somático sem sementes em videira ‘Niagara Rosada’ [Seedless somatic mutant in the grapevine ‘Niagara Rosada’]. Bragantia 47(2):171-176. https://doi.org/10.1590/S0006-87051988000200003

Pires EJP, Sawazaki HE, Terra MM, Botelho RV, Conagim A, Nogueira NAM (2003). Redimeire: A natural mutation of cv. Italia Vitis in Brazil. VITIS-GEILWEILERHOF 42(1):55-56. https://doi.org/10.5073/vitis.2003.42.55-56

Raman VS, Rangasamy SRS, Manimekalai G (1971). Triploidy and seedlessness in guava (Psidium guajava L.). Cytologia 36(3):392-399. https://doi.org/10.1508/cytologia.36.392

Reisch, BI, Watson JP (1984). Inheritance of leaf variegation in Vitis species. The Journal of Heredity 75(5):417-418. https://doi.org/10.1093/oxfordjournals.jhered.a109973

Rick CM, Barton DW (1954). Cytologial and genetical identification of the primary trisomics of the tomato. Genetics 39(5):640-666. https://doi.org/10.1093/genetcs/39.5.640

Sharma RL, Mukherjee SK (1972). Morphological descriptions of some induced systematic mutants of grapes (Vitis vinifera L.). Vitis 11(3): 177-188. https://doi.org/10.5073/vitis.1972.11.177-188

Sharma RL, Mukherjee SK (1973). Some anatomical features of radiation-induced grape variegata. Vitis 12(3):189-191. https://doi.org/10.5073/vitis.1973.12.189-191

Silva LAC, Pagliarini MS, Santos AS, Silva N, Souza VF (2012). Chromosome number, microsporogenesis, microgametogenesis and pollen viability in the Brazilian native grass Mesosetum chaseae (Poaceae). Genetics and Molecular Research 11(4):4100-4109. https://doi.org/10.4238/2012.September.12.1

Sousa JSI (1959). Mutações somáticas na videira Niagara. [Somatic mutations in the Niagara grapevine] Bragantia 18(unique number):387-415. https://doi.org/10.1590/S0006-87051959000100027

Sousa JSI (1996). Uvas para o Brasil [Grapes to Brazil]. FEALQ, Piracicaba, pp 791.

Staudt G, Kassrawi M (1972). Die meiosis von di- und tetraploidem Vitis vinifera ‘Riesling’ [The meiosis in di and tetraploids Vitis vinifera ‘Riesling’]. Vitis 11(2):89-98. https://doi.org/10.5073/vitis.1972.11.89-98

Tofanelli MBD, Botelho RV, Pires EJP, Vilela LAF, Ribeiro DO (2011). Phenology of “Niagara Rosada” grapevines grafted on different rootstocks grown on Cerrado (Brazilian savanna) of Goiás State, Brazil. African Journal of Biotechnology 10(17):3387-3392 https://doi.org/10.5897/AJB09.1950

Vezzulli S, Leonardelli L, Malossini U, Stefanini M, Velasco R, Moser C (2012). Pinot Blanc and Pinot Gris arose as independent somatic mutations of Pinot Noir. Journal of Experiment Botany 63(18):6359-6369. https://doi.org/10.1093/jxb/ers290

Walker AR, Lee E, Robinson SP (2006). Two new grape cultivars, bud sports of Cabernet Sauvignon bearing pale-coloured berries, are the result of deletion of two regulatory genes of the berry colour locus. Plant Molecular Biology 62(4-5):623-635. https://doi.org/10.1007/s11103-006-9043-9

Winkler A; Athoo T; Knoche M (2022). Russeting of fruits: etiology and management. Horticulturae 8(3):231 https://doi.org/10.3390/horticulturae8030231

Zhao M-H, Li X, Zhang X-X, Zhang H, Zhao X-Y (2020). Mutation mechanism of leaf color in plants: A review. Forests 11(8):851 https://doi.org/10.3390/f11080851

Published

2023-06-27

How to Cite

PIEROZZI, N. I., & FERNANDES MOURA, M. (2023). Meiotic behavior of two grapevine somatic mutants with ornamental potential. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(2), 13030. https://doi.org/10.15835/nbha51213030

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha51213030