Promotion of tomato growth by Trichoderma sp. under shade mesh conditions


  • Crescencio URÍAS-GARCÍA Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Km 2.5, carretera Delicias-Rosales, campus Delicias, CD, Delicias, Chihuahua (MX)
  • Sandra PEREZ ALVAREZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Km 2.5, carretera Delicias-Rosales, campus Delicias, CD, Delicias, Chihuahua (MX)
  • Eduardo F. HÉCTOR-ARDISANA Universidad Técnica de Manabí, Instituto de Posgrado, Portoviejo (EC)
  • María A. FLORES CÓRDOVA Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Av. Pascual Orozco s/n, Campus 1, CP. 31000, Santo Niño, Chihuahua (MX)



chemical fertilizers, microorganism, morphological characterization, plant growth promotion, shade mesh


Chemical fertilizers are frequently used in agriculture with harmful effects on ecological components, so the use of microorganisms as growth regulators is an agricultural practice increasingly used today. The aim of this research was to evaluate Trichoderma sp. as growth regulator in tomato plants. Trichoderma sp. isolated from soils was grown on solid PDA medium for morphological characterization of the fungus. An experiment to analyse the interaction between Trichoderma sp. and shade mesh conditions was established, where: T1 = Trichoderma sp.; T2 = without Trichoderma sp. (fertilization recommended for the crop was applied); T3 = shade mesh and T4 = without shade mesh. Several variables were evaluated in the plants and in the fruits. The macroscopic characteristics showed mycelium with a cottony morphology and a dark green coloration, and the microscopic characteristics of the fungus were conidiophores with a branch, phialides and ovoid to ellipsoid conidia. Interaction of Trichoderma sp. and shade mesh had a significant effect on plant height, number of flowers and number of fruits, with the greater values with Trichoderma sp. and shade mesh. Regarding the evaluation of the fruits significant differences were found in the weight, diameter, length, and colour (L and a* value) but not in b* value.


Aberkani K, Hao X, Gosselin A, de Halleux D (2008). Responses of leaf gas exchanges, chlorophyll a fluorescence, and fruit yield and quality of greenhouse tomato to shading with retractable liquid foam. Acta Horticulturae 797:235-240.

Azad K, Kaminskyj SA (2016). Fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis 68:73-78.

Bader AN, Salerno GL, Covacevich F, Consolo VF (2020). Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.). Journal of King Saud University 2:867-873.

Barnett H, Hunter B (1972). Illustrated genera of imperfect fungi. Burgess Publ., Co. (4th Ed), EE. UU.

Bender SF, Wagg C, van der Heijden MGA (2016). An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution 31:440-452.

Cai W-J, Ye T-T, Wang Q, Cai B-D, Feng Y-Q (2016). A rapid approach to investigate spatiotemporal distribution of phytohormones in rice. Plant Methods 12:47.

Chagas LFB, Castro HG, Colonia BSO, Carvalho-Filho MR, Miller LO, Chagas-Junior AF (2016). Efficiency of the inoculation of Trichoderma asperellum UFT-201 in cowpea production components under growth conditions in field. Revista de Ciências Agrárias, 39(3):413-421.

Contreras-Cornejo HA, Macías-Rodríguez L, Vergara AG, López-Bucio J (2015). Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. Plant Growth Regulation 34:425-432.

Datnoff LE, Pernezny KL (1998). Effect of bacterial and fungal microorganisms to colonize tomato roots, improve transplant growth and control of Fusarium crown and root rot. Florida Tomato Institute Proceedings 111:26-33.

Fontes PCR, Fontes RR (1991). Absorção de P e desenvolvimento do tomateiro rasteiro plantado em fileiras simples e duplas [P uptake and development of low-growing tomato planted in single and double rows]. Horticultura Brasileira 9(2):77-79.

Freeman BB, Reimers K (2011). Tomato consumption and health: Emerging benefits. American Journal of Lifestyle Medicine 5:182-191.

García-Núñez HG, Martínez-Campos AR, Hermosa-Prieto MR, Monte-Vázquez E, Aguilar-Ortigoza CJ, González-Esquivel CE (2017). Morphological and molecular characterization of native isolates of Trichoderma and its potential biocontrol against Phytophthora infestans. Revista Mexicana de Fitopatología 35:58-79.

Ghorbanpour A, Salimi A, Ghanbary MAT, Pirdashti H, Dehestani A (2018). The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Scientia Horticulturae 230:134-141.

Gonzalez MF, Magdama F, Galarza L, Sosa D, Romero Ch (2020). Evaluation of the sensitivity and synergistic effect of Trichoderma reesei and mancozeb to inhibit under in vitro conditions the growth of Fusarium oxysporum. Communicative and Integrative Biology 13(1):160-169.

Halifu S, Deng X, Song X, Song R (2019). Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients and fungalcommunity of Pinus sylvestris var. mongolica annual seedlings. Forests 10:758.

Hermosa R, Viterbo A, Chet I, Monte E (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17-25.

Hoyos-Carvajal L, Orduz S, Bissett J (2009). Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological control 51:409-416.

Ikram M, Ali N, Jan G, Iqbal A, Hamayun M, Jan FG, Hussain A, Lee IJ (2019). Trichoderma reesei improved the nutrition status of wheat crop under salt stress. Journal of Plant Interactions 14(1):590-602.

Jaroszuk-Ściseł J, Tyśkiewicz R, Nowak A, Ozimek E, Majewska M, Hanaka A, … Janusz G (2019). Phyto hormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. International Journal of Molecular 20:4923.

Kubicek CP, Harman GE (1998). Trichoderma and Gliocladium. Vol. 1, Basic Biology, Taxonomy and Genetics. Taylor and Francis, London.

Lopes-Sobrinho OP, Silva dos Santos LN, Loureiro-Soares FA, Nobre-Cunha F, Marques- Vidal V, Batista-Teixeira M (2022). General aspects of tomato crops and phosphorus fertilizer application: a review. Comunicata Scientiae 13:1-12.

López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015). Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae 196:109-123.

Lorito M, Woo SL, Harman GE, Monte E (2010). Translational research on Trichoderma: From ‘omics to the field. Annual Review of Phytopathology 48:395-417.

Maniscalco DP, Dorta B (2015). Diversidad del hongo Trichoderma spp. en plantaciones de maíz de Venezuela [Diversity of the fungus Trichoderma spp. in corn plantations in Venezuela]. Interciencia 40(1):23-31.

McGovern RJ, Datnoff LE, Tripp L (1992). Effect of mixed infection and irrigation method on colonization of tomato roots by Trichoderma harzianum and Glomus intraradix. Proceedings of the Florida State Horticultural Society 105:361-363.

Nzanza B (2011). Seedling quality, plant growth and fruit yield and quality of tomato (Solanum lycopersicum L.) in response to Trichoderma harzianum and arbuscular mycorrhizal fungi. Doctor of Philosophy degree, University of Pretoria.

Palacios-Torres RE, Bustamante-Ortiz AG, Prieto-Baeza LA, Hernández-Hernández H, Ramírez-Seañez AR, Yam-Tzec JA, Díaz-Félix G (2019). Effect of foliar application of Trichoderma on the quality of tomato fruits grown in different hydroponic substrates. Folia Horticulturae 31(2):343-352.

Rabeendran N, Moot DJ, Jones EE, Stewart A (2000). Inconsistent growth promotion of cabbage and lettuce from Trichoderma isolates. New Zealand Plant Protection 53:143-146.

Ruiz-Cisneros MF, Ornelas-Paz JJ, Olivas-Orozco GI, Acosta-Muñiz CH, Sepúlveda-Ahumada DR, Pérez-Corral DA, … Fernández-Pavía SP (2018). Effect of Trichoderma spp. and phytopathogenic fungi on plant growth and tomato fruit quality. Revista Mexicana de Fitopatología 36(3):444-456.

Sadeghian SK (2018). Interpretación de los resultados de análisis de suelo [Interpretation of soil test results]. Avances Técnicos Cenicafé 497:1-8.

Sajeesh PK (2015). A Triple Combination for the Management of Late Blight Disease of Potato (Solanum tuberosum L.). Ph.D. Thesis, GB Pant University of Agriculture and Technology.

Samuels GJ, Hebbar PK (2015). Trichoderma: Identification and Agricultural Applications. American Phytopathological Society. Edition 1.

Sharma V, Salwan R, Sharma PN (2017). The comparative mechanistic aspects of Trichoderma and probiotics: scope for future research. Physiological and Molecular Plant Pathology 100:84-96,

SIAP (Servicio de Información Agroalimentaria y Pesquera). Escenario mensual de productos agroalimentarios, 2022 [Monthly scenario of agri-food products, 2022]. Retrieved 2022 October 10 from

Silva EC, Miranda JRP, Alvarenga MAR (2001). Yield and nutrient concentration of tomato plants pruned and grown under high planting density according to phosphorus, gypsum and nitrogen sources. Horticultura Brasileira 19:64-69.

Sivila N, Alvarez S (2013). Producción artesanal de Trichoderma. Tecnologías agroecológicas para la producción familiar [Artisan production of Trichoderma. Agroecological technologies for family production.]. 1st Ed.; Universidad Nacional de Jujuy; San Salvador de Jujuy, Argentina.

Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, … Kiers ET (2018). Core microbiomes for sustainable agroecosystems. Nature Plants 4:247-257.

Troya C, Vaca-Granda L (2014). Protocolo para la reproducción de cepas nativas de Trichoderma spp. en laboratorios artesanales [Protocol for the reproduction of native strains of Trichoderma spp. in craft laboratories.]. Proyecto de Innovación Tecnológica Participativa y Producción Agrícola. Quito: Ministerio de Agricultura, Ganadería, Acualcultura y Pesca, Ecuador.

Uddin AFM, Hussain MS, Rahman Sk S, Ahmad H Roni MZK (2015). Effect of Trichoderma concentrations on growth and yield of tomato. Bangladesh Research Publications Journal 11(3):228-232.

Valera D, Molina F, Gil J (2001). Las mallas como técnica de control climático en invernaderos [Meshes as a climate control technique in greenhouses]. Vida Rural 8:50-52.

Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001). Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235-242.

You J, Zhang J, Wu M, Yang L, Chen W, Li G (2016). Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biological control 101:31-38.

Zaghloul RA, Ehsan HA, Neweigy NA, Khalifa NA (2007). Application of biofertilization and biological control for tomato production. 12th Conference of Microbiology; Cairo, Egypt (18-20 11 2007), pp 198-212.



How to Cite

URÍAS-GARCÍA, C., PEREZ ALVAREZ, S., HÉCTOR-ARDISANA, E. F., & FLORES CÓRDOVA, M. A. (2022). Promotion of tomato growth by Trichoderma sp. under shade mesh conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(4), 12962.



Research Articles
DOI: 10.15835/nbha50312962

Most read articles by the same author(s)