Physiological responses of coffee (Coffea arabica L.) plants to biochar application under water deficit conditions
DOI:
https://doi.org/10.15835/nbha51312873Keywords:
biochar application, coffee, drought, oxidative stress, stomatal conductanceAbstract
Water deficit is one of the main abiotic stressors in crop production. The development of strategies to improve plant tolerance to water deficits has gained importance. Biochar application can be considered an alternative to mitigate abiotic stress. The use of coffee pulp to produce biochar could be a novel strategy for improving drought tolerance in coffee crops. Coffer plants cv. ‘Castillo’ were grown in pots or PVC pipes filled with silt loam soil in two separate experiments to evaluate the effect of coffee pulp biochar application on physiological responses under water deficit conditions. Four different biochar doses (0, 4, 8, and 16 t · ha-1) were used. A water deficit was imposed through progressive reduction irrigation (25%, 50%, 75%, and 90% of water lost via evapotranspiration). The leaf gas exchange, maximum quantum yield of PSII (Fv/Fm), biomass, and water status were measured. Reduced irrigation negatively affected the Fv/Fm, leaf gas exchange, biomass, and water status. Biochar (8 t ha-1) increased photosynthesis in both well-irrigated plants (6 µmol m-2 s-1) and with reduced irrigation (3.5 µmol m-2 s-1) compared to 0 t ha-1 biochar (reduced irrigation: 1.8 µmol m-2 s-1 and well irrigated: 3.9 µmol m-2 s-1). In conclusion, 8 t ha-1 biochar can be a recommended practice for coffee production, not only to capture carbon and reintroduce it to the soil, but also to alleviate the effects of moderate water deficit. In future investigations, biochar application can be evaluated as an alternative to soil management or coffee plant nutrition, and its interaction with drought stress scenarios.
References
Abbas T, Rizwan M, Ali S, Adrees M, Mahmood A, Zia-ur-Rehman M, … Qayyum MF (2018). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicology and Environmental Safety 148:825-833. https://doi.org/10.1016/j.ecoenv.2017.11.063
Ahmad M, Lee SS, Lee SE, Al-Wabel MI, Tsang DC, Ok YS (2017). Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of Soils and Sediments 17:717-730. https://doi.org/10.1007/s11368-015-1339-4
Ali S, Rizwan M, Qayyum MF, Ok YS, Ibrahim M, Riaz M, … Shahzad AN (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environmental Science and Pollution Research 24:12700-12712. https://doi.org/10.1007/s11356-017-8904-x
Alvarado-Sanabria O, Garcés-Varón G, Restrepo-Díaz H (2017). Physiological response of rice plants (Oryza sativa L.) subjected to different periods of two night temperatures. Journal of Stress Physiology & Biochemistry 13:35-43.
Amoakwah E, Frimpong KA, Okae-Anti D, Arthur E (2017). Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam. Geoderma 307:189-197. https://doi.org/10.1016/j.geoderma.2017.08.025
Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Le W (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research 6:2026-2032. https://doi.org/10.5897/AJAR10.027
Arcila‐Pulgarín J, Buhr L, Bleiholder H, Hack H, Meier U, Wicke H (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Annals of Applied Biology 141:19-27. https://doi.org/10.1111/j.1744-7348.2002.tb00191.x
Batool A, Taj S, Rashid A, Khalid A, Qadeer S, Saleem A, Ghufran M (2015). Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Frontiers in Plant Science 6:733. http://dx.doi.org/10.3389/fpls.2015.00733
Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology 4:35. https://doi.org/10.3389/fphys.2013.00035
Bunn C, Läderach P, Rivera OO, Kirschke D (2015). A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change 129:89-101. https://doi.org/10.1007/s10584-014-1306-x
Busscher WJ, Novak JM, Evans DE, Watts DW, Niandou MAA, Ahmedna M (2010). Influence of biochar on physical properties of a Norfolk loamy sand. Soil Science 175:10-14. https://doi.org/10.1097/SS.0b013e3181cb7f46
Ch’ng HY, Ahmed OH, Majid NMA (2015). Improving phosphorus availability, nutrient uptake and dry matter production of Zea mays L. on a tropical acid soil using poultry manure biochar and pineapple leaves compost. Experimental Agriculture 52:447-465. https://doi.org/10.1017/S0014479715000204
Dadi D, Daba G, Beyene A, Luis P, Van der Bruggen B (2019). Composting and co-composting of coffee husk and pulp with source-separated municipal solid waste: a breakthrough in valorization of coffee waste. International Journal of Recycling of Organic Waste in Agriculture 8:263-277. https://doi.org/10.1007/s40093-019-0256-8
DaMatta FM, Avila RT, Cardoso AA, Martins SC, Ramalho JC (2018). Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: A review. Journal of Agricultural and Food Chemistry 66:5264-5274. https://doi.org/10.1021/acs.jafc.7b04537
de Oliveira MMT, Shuhua L, Kumbha DS, Zurgil U, Raveh E, Tel-Zur N (2020). Performance of Hylocereus (Cactaceae) species and interspecific hybrids under high- temperature stress. Plant Physiology and Biochemistry 153:30-39. https://doi.org/10.1016/j.plaphy.2020.04.044
Deng B, Bada B, Tammeorg P, Helenius J, Luukkanen O, Starr M (2019). Drought stress and Acacia seyal biochar effects on sorghum gas exchange and yield: A greenhouse experiment. Agriculture and Natural Resources 53:573-580. https://doi.org/10.34044/j.anres.2019.53.6.03
Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2016). InfoStatversion 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Retrieved 2022 August 12 from http://www.infostat.com.ar
Díaz-Leguizamón JJ, Chingaté-Cruz OF, Sánchez-Reinoso AD, Restrepo-Díaz H (2016). The effect of foliar applications of a bio-stimulant derived from algae extract on the physiological behavior of lulo seedlings (Solanum quitoense cv. Septentrionale). Ciencia e Investigación Agraria 43:25-37. http://dx.doi.org/10.4067/S0718-16202016000100003
Drake JE, Power SA, Duursma RA, Medlyn BE, Aspinwall MJ, Choat B, … Tissue DT (2017). Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agricultural and Forest Meteorology 247:454-466. https://doi.org/10.1016/j.agrformet.2017.08.026
Dubberstein D, Rodrigues WP, Semedo JN, Rodrigues AP, Pais IP, Leitão AE, ... Ramalho JC (2017). Mitigation of the negative impact of warming on the Coffee crop: The Role of Increased Air [CO2] and Management Strategies. In: Shanker A (Ed). Climate Resilient Agriculture-Strategies and Perspectives. Intechopen LTD, UK. pp 57-85. https://doi.org/10.5772/intechopen.72374
Echeverria MC, Nuti M (2017). Valorisation of the residues of coffee agro-industry: perspectives and limitations. Open Waste Management Journal 10:13-22. https://doi.org/10.2174/1876400201710010013
Federación Nacional de Cafeteros de Colombia (2020). Estadístias caferetas. Retrieved 2022 August 12 from https://federaciondecafeteros.org/wp/estadisticas-cafeteras/
Fischer B, Manzoni S, Morillas L, García M, Johnson M, Lyon S (2019). Can biochar improve agricultural water use efficiency? In: Geophysical Research Abstracts; European Geosciences Union: Munich, Austria, Volume 21.
Fracasso A, Trindade L, Amaducci S (2016). Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. Journal of Plant Physiology 190:1-14. https://doi.org/10.1016/j.jplph.2015.10.009
Gavili E, Moosavi AA, Haghighi AAK (2019). Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean? Industrial Crops and Products 128:445-454. https://doi.org/10.1016/j.indcrop.2018.11.047
Gonçalves M, Guerreiro MC, Ramos PH, de Oliveira LCA, Sapag K (2013). Activated carbon prepared from coffee pulp: potential adsorbent of organic contaminants in aqueous solution. Water Science & Technology 68:1085-1090. https://doi.org/10.2166/wst.2013.349
Hafeez Y, Iqbal S, Jabeen K, Shahzad S, Jahan S, Rasul F (2017). Effect of biochar application on seed germination and seedling growth of Glycine max (L.) Merr. Under drought stress. Pakistan Journal of Botany 49:7-13.
Hussain S, Rao MJ, Anjum MA, Ejaz S, Zakir I., Ali MA, … Ahmad S (2019). Oxidative stress and antioxidant defense in plants under drought conditions. In: Hasanuzzaman M, Hakeem K, Nahar K, Alharby H (Eds). Plant Abiotic Stress Tolerance. Springer: Cham. Switzerland pp 207-219. https://doi.org/10.1007/978-3-030-06118-0_9
Jeffery S, Verheijen FG, Kammann C, Abalos D (2016). Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology and Biochemistry 101:251-258. https://doi.org/10.1016/j.soilbio.2016.07.021
Karhu K, Mattila T, Bergström I, Regina K (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–Results from a short-term pilot field study. Agriculture, Ecosystems & Environment 140:309-313. https://doi.org/10.1016/j.agee.2010.12.005
Keshavarz-Afshar R, Hashemi M, DaCosta M, Spargo J, Sadeghpour A (2015). Biochar application and drought stress effects on physiological characteristics of Silybum marianum. Communications in Soil Science and Plant Analysis 47:743-752. https://doi.org/10.1080/00103624.2016.1146752
Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry 41:210-219. https://doi.org/10.1016/j.soilbio.2008.10.016
Lehman NL (2009). The ubiquitin proteasome system in neuropathology. Acta Neuropathologica 118:329-347. https://doi.org/10.1007%2Fs00401-009-0560-x
Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’neill B, … Neves EG (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70:1719-1730. https://doi.org/10.2136/sssaj2005.0383
Lobell DB, Gourdji SM (2012). The influence of climate change on global crop productivity. Plant Physiology 160:1686-1697. https://doi.org/10.1104/pp.112.208298
Lyu S, Du G, Liu Z, Zhao L, Lyu D (2016). Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiologiae Plantarum 38:1-10. https://doi.org/10.1007/s11738-016-2236-1
Marques MC, Nascimento CWA, da Silva AJ, da Silva-Gouveia-Neto A (2017). Tolerance of an energy crop (Jatropha curcas L.) to zinc and lead assessed by chlorophyll fluorescence and enzyme activity. South African Journal of Botany 112:275-282. https://doi.org/10.1016/j.sajb.2017.06.009
Merlaen B, De-Keyser E, Ding L, Leroux O, Chaumont F, Van Labeke MC (2019). Physiological responses and aquaporin expression upon drought and osmotic stress in a conservative vs. prodigal Fragaria x ananassa cultivar. Plant Physiology and Biochemistry 145:95-106. https://doi.org/10.1016/j.plaphy.2019.10.030
Montilla PJ (2006). Caracterización de algunas propiedades físicas y factores de conversión del café. BSc Dissertation, Universidad de Caldas. 107 p.
Morales F, Ancín M, Fakhet D, González-Torralba J, Gámez AL, Seminario A, … Aranjuelo I (2020). Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants 9:88. https://doi.org/10.3390/plants9010088
Ocampo-López OL, Castañeda-Peláez K, Vélez-Upegui JJ (2017). Caracterización de los ecotopos cafeteros colombianos en el Triángulo del Café. Perspectiva Geográfica 22:89-108. https://doi.org/10.19053/01233769.6100
Olmo M, Alburquerque JA, Barrón B, Del Campillo MC, Gallardo A, Fuentes M, Villar R (2014). Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biology and Fertility of Soils 50:1177-1187. https://doi.org/10.1007/s00374-014-0959-y
Poltronieri P, Rossi F (2016). Challenges in specialty coffee processing and quality assurance. Challenges 7:19. https://doi.org/10.3390/challe7020019
Pranata-Erdiansyah NP, Wachjar A, Sulistyono E, Supijatno S (2019). Growth response of seedlings of four Robusta coffee (Coffea canephora Pierre. Ex. A. Froehner) clones to drought stress. Pelita Perkebunan 35:1-11. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v35i1.344
Rajapaksha AU, Chen SS, Tsang DC, Zhang M, Vithanage M, Mandal S, … Ok YS (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276-291. https://doi.org/10.1016/j.chemosphere.2016.01.043
Raviv M, Blom TJ (2001). The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Scientia Horticulturae 88:257-276. https://doi.org/10.1016/S0304-4238(00)00239-9
Riaz M, Arif MS, Hussain Q, Khan SA, Tauqeer HM, Yasmeen T, … Haider MS (2019). Application of biochar for the mitigation of abiotic stress-induced damages in plants. In: Hasanuzzaman M, Fujita M, Oku H, Islam T (Eds). Plant Tolerance to Environmental Stress: Role of Phytoprotectants. Taylor & Francis Group, London pp 285-304.
Rodrigues WP, Silva JR, Ferreira LS, Machado-Filho JA, Figueiredo FA, Ferraz TM, Ramalho JC (2018). Stomatal and photochemical limitations of photosynthesis in coffee (Coffea spp.) plants subjected to elevated temperatures. Crop and Pasture Science 69:317-325. https://doi.org/10.1071/CP17044
Rodríguez N, Zambrano D (2010). Los subproductos del café: Fuente de energía renovable. Avances técnicos Cenicafe 393:1-8.
Rodríguez-Frómeta RA, Sánchez JL, García JMR (2020). Evaluation of coffee pulp as substrate for polygalacturonase production in solid state fermentation. Emirates Journal of Food and Agriculture 32:117-124. https://doi.org/10.9755/ejfa.2020.v32.i2.2068
Romdhane L, Awad YM, Radhouane L, Dal Cortivo C, Barion G, Panozzo A, Vamerali T (2019). Wood biochar produces different rates of root growth and transpiration in two maize hybrids (Zea mays L.) under drought stress. Archives of Agronomy and Soil Science 65:846-866. https://doi.org/10.1080/03650340.2018.1532567
Ruiz ADC, Pabón JD (2013). Efecto de los fenómenos de El Niño y La Niña en la precipitación y su impacto en la producción agrícola del departamento del Atlántico (Colombia). Cuadernos de Geografía: Revista Colombiana de Geografía. 22:35-54.
Sadeghian S (2008). Fertilidad del suelo y nutrición del café en Colombia: Guía práctica. Boletín técnico No 32:44.
Sadeghian S, Jaramillo A (2016). Nutrición de los cafetales en Colombia, en escenarios de la niña. Chinchiná, Colombia. Cenicafé pp 12.
Salamanca-Jimenez A (2017). Coffee crop fertilization in Colombia : A mini-review. International Potash Institute 50:22-30.
Saleem-Akhtar S, Li G, Andersen MN, Liu F (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management 138:37-44. https://doi.org/10.1016/j.agwat.2014.02.016
Sánchez-Reinoso AD, Ávila-Pedraza EA, Restrepo-Díaz H (2020). Use of biochar in agricultura. Acta Biológica Colombiana 25:327-338. https://doi.org/10.15446/abc.v25n2.79466
Shashidhar HE, Gowda HV, Raveendra GM, Kundur PJ, Kumar GN, Suprabha N, … Sonam R (2012). PVC tubes to characterize roots and shoots to complement field plant productivity studies. In: Shashidhar HE, Henry A, Hardy B (Eds). Methodologies for root drought studies in rice. International Rice Research Institute, Philippines pp 15-21.
Silva BM, de Oliveira GC, Serafim ME, Carducci CE, da Silva ÉA, Barbosa SM, ... Guimarães PTG. (2019). Soil management and water-use efficiency in Brazilian coffee crops. In: Castanheira DT (Ed). Coffee-Production and Research; IntechOpen: London, UK pp 1-20.
Sohi S (2012). Carbon storage with benefits. Science 338:1034-1035. https://doi.org/10.1126/science.1225987
Sorrenti G, Masiello CA, Toselli M (2016). Biochar interferes with kiwifruit Fe-nutrition in calcareous soil. Geoderma 272:10-19. https://doi.org/10.1016/j.geoderma.2016.02.017
Steiner C, Teixeira G, Lehmann J, Nehls T, de Macedo J, Blum W (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian soil. Plant and Soil 291:275-290. https://doi.org/10.1007/s11104-007-9193-9
Sun J, Drosos M, Mazzei P, Savy D, Todisco D, Vinci G, … Piccolo A (2017). The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination. Science of The Total Environment 576:858-867. https://doi.org/10.1016/j.scitotenv.2016.10.095
Tayyab M, Islam W, Khalil F, Ziqin P, Caifang Z, Arafat Y, … Hua Z (2018). Biochar: An efficient way to manage low water availability in plants. Applied Ecology and Environmental Research 16:2565-2583. http://dx.doi.org/10.15666/aeer/1603_25652583
Tounekti T, Mahdhi M, Al-Turki TA, Khemira H (2018). Water relations and photo-protection mechanisms during drought stress in four coffee (Coffea arabica) cultivars from southwestern Saudi Arabia. South African Journal of Botany 117:17-25. https://doi.org/10.1016/j.sajb.2018.04.022
Tyree MT, Patiño S, Bennink J, Alexander J (1995). Dynamic measurements of roots hydraulic conductance using a high-pressure flowmeter in the laboratory and field. Journal of Experimental Botany 46:83-94. https://doi.org/10.1093/jxb/46.1.83
Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management 27:205-212. https://doi.org/10.1111/j.1475-2743.2011.00340.x
Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, … Cowie A (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327:235-246. https://doi.org/10.1007/s11104-009-0050-x
Wang S, Zheng J, Wang Y, Yang Q, Chen T, Chen Y and Wang T (2021). Photosynthesis, chlorophyll fluorescence, and yield of peanut in response to biochar application. Frontiers in Plant Science 12:1000. https://doi.org/10.3389/fpls.2021.650432
Wu Y, Wang X, Zhang L, Zheng Y, Liu X, Zhang Y (2023). The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. Frontiers in Plant Science 14:1163451. https://doi.org/10.3389/fpls.2023.1163451
Yin J, Bassuk NL, Olberg MW, Bauerle TL (2014). Fine root hydraulic conductance is related to post-transplant recovery of two Quercus tree species. Journal of the American Society for Horticultural Science 139:649-656. https://doi.org/10.21273/JASHS.139.6.649
Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez‐Cadenas A (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum 162:2-12. https://doi.org/10.1111/ppl.12540
Zhang W, Wei J, Guo L, Fang H, Liu X, Liang K, Niu W, Liu F, Siddique KHM (2023). Effects of two Biochar types on mitigating drought and salt stress in tomato seedlings. Agronomy 13:1039. https://doi.org/10.3390/agronomy13041039
Zoghi Z, Hosseini SM, Kouchaksaraei MT, Kooch Y, Guidi L (2019). The effect of biochar amendment on the growth, morphology and physiology of Quercus castaneifolia seedlings under water-deficit stress. European Journal of Forest Research 138:967-979. https://doi.org/10.1007/s10342-019-01217-y
Zulfiqar F, Allaire SE, Akram NA, Méndez A, Younis A, Peerzada AM, Wright SR (2019). Challenges in organic component selection and biochar as an opportunity in potting substrates: a review. Journal of Plant Nutrition 42:1386-1401. https://doi.org/10.1080/01904167.2019.1617310
Zulfiqar F, Wei X, Shaukat N, Chen J, Raza A, Younis A, Siddique KH (2021). Effects of Biochar and biochar–compost mix on growth, performance and physiological responses of potted Alpinia zerumbet. Sustainability 13:11226. https://doi.org/10.3390/su132011226
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Daniel F. REYES-HERRERA, Alefsi D. SÁNCHEZ-REINOSO, Leonardo LOMBARDINI, Hermann RESTREPO-DÍAZ

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.