Mycorrhization and root excision effects on morphological and biomass production of carob (Ceratonia siliqua L.)

Authors

  • Faten KANFOUD University of Carthage, The National Research Institute of Rural Engineering, Water and Forestry, INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080; University of Tunis EL Manar, Faculty of Sciences of Tunis, Departement of Biology, Tunis 2092 (TN)
  • Awatef SLAMA University of Carthage, The National Research Institute of Rural Engineering, Water and Forestry, INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)
  • Issam TOUHAMI University of Carthage, The National Research Institute of Rural Engineering, Water and Forestry, INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)
  • Abdelaziz AYARI University of Carthage, The National Research Institute of Rural Engineering, Water and Forestry, INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)
  • Ines HAJLAOUI University of Carthage, The National Research Institute of Rural Engineering, Water and Forestry, INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)
  • Mohamed L. KOUJA University of Carthage, The National Research Institute of Rural Engineering, Water and Forestry, INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)
  • Mohamed T. ELAIEB University of Carthage, The National Research Institute of Rural Engineering, Water and Forestry, INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)

DOI:

https://doi.org/10.15835/nbha51112835

Keywords:

carob tree, inoculation, Rhizophagus intraradices, root excision

Abstract

Ceratonia siliqua L. plant (carob tree) is a Mediterranean species. In Tunisia, natural distribution of this species is situated in humid zones in the north to the driest ones in the south of the country. Ceratonia siliqua regeneration depends on seeds quality and performances as well as on the practical vegetative propagation tools. Nowadays, carob tree cultivation is limited by the seedlings quality behind the juvenile stage caused by the deterioration of plant root system. This study investigates the effect of lone and mutual root excision technique and mycorrhization on carob seedlings growth performance. Two carob seeds origins were germinated then excised and/or mycorrhized using a sterile substate. For control seedlings, experiment was made without excision nor mycorrhization application. Seedlings were grown in green house. Mycorrhizae applied with excision ameliorated significantly plant length, leaf number, dry and fresh weight of external plant part and roots, collar root diameter and roots branching numbers. Survey of mycorrhizae effects proved also amelioration on carob growth and biomass production but indiscernibly than use of mycorrhization and excision techniques together. Excision alone does not take a part on seedling increasing performance. Mycorrhization of carob species applied with excision increased morphological plant status. Results highlighted the efficiency to use this process to promote plants behaviour by enhancing plant roots and growth in forest farming model in forest areas and agricultural lands.

References

Aissa A, Chakroun I, Rejeb R, Ayed M (2021). Effect of partial dietary substitution of Carob (Ceratonia siliqua L.) to barley grains on diet digestibility in growing rabbits. Journal of New Sciences Agriculture and Biotechnology 79(1):4580-4585.

Aysan E, Demir S (2009). Using arbuscular mycorrhizal fungi Rhizobium leguminosarum and Biovar phaseoli against Sclerotinia sclerotiorum (Lib.) de Bary in the common bean (Phaseolus vulgaris L.). Plant Pathology Journal 8:74-78.

Battle I (1997). Current situation and possibilities of development of the carob tree (Ceratonia siliqua L) in the Mediterranean region. Rome, Italy.

Beltrano J, Ruscitti M, Arango MC, Ronco M (2013). Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and P levels. Journal Soil Science and Plant Nutrition 13:123-141. http://dx.doi.org/10.4067/S0718-95162013005000012

Boubkar F, Rachid F, Fatima A, Oudou IA, Saadia T, Said W (2021). Bioclimatic impact on the carob seeds morphological diversity in Morocco. Bioscience Biotechnology Research Asia 18(1). http://dx.doi.org/10.13005/bbra/2908

Boutasknit A, Baslam M, Ait-El-Mokhtar M, Anli M, Ben-Laouane R, Ait-Rahou Y, Meddich A (2021). Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees. Scientific Reports 11(1):1-23. https://doi.org/10.1038/s41598-021-02018-3

Clarke C, Mosse B (1981). Plant-growth responses to vesicular-arbuscular mycorrhiza. 12. Field inoculation responses of barley at 2 soil-p levels. New Phytologist 87(4):695-703. https://doi.org/10.1111/j.1469-8137.1981.tb01704.x

Cruz C, Green JJ, Watson CA, Wilson F, Martins-Loucào AA (2004). Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14:177-184. https://doi.org/10.1007/s00572-003-0254-5.

Dallali S, Aloui F, Selmi H, Sebei H (2018). Comparison of the chemical composition and the antioxidant activity of the leaves of Carob tree (Ceratonia siliqua L.) collected in three sites of Djebel Zaghouan (Tunisia). Journal of New Sciences Agriculture and Biotechnology CIRS (21):3429-3438.

Dalli Y, Yahia N, Bekki A (2020). Diversity of arbuscular mycorrhizal fungi associated with carob trees (Ceratonia Siliqua L.) in Western Algeria. Plant Cell Biotechnology and Molecular Biology 180-193.

Di Guardo M, Scollo F, Ninot A, Rovira M, Hermoso JF, Distefano G, La Malfa S, Batlle I (2019). Genetic structure analysis and selection of a core collection for carob tree germplasm conservation and management. Tree Genetics & Genomes 15:41. https://doi.org/10.1007/s11295-019-1345-6

Diop I, Kane A, Krasova-Wade T, Sanon KB, Houngnandan P, Neyra M, Noba K (2013). Impacts of pedoclimatic conditions and cropping system on the response of cowpea (Vigna unguiculata L. Walp.) to inoculation with endomycorhizal Rhizophagus irregularis. Journal of Applied Biosciences 69:5465-5474. https://dx.doi.org/10.4314/jab.v69i0.95072

El Boukhari E, Gmira N, Brhadda N (2013). Effet des traitements physiques sur la croissance et le développement des semis de glands de chêne liège (Quercus suber L.) en pépinière forestière au Maroc. Geo-Eco-Trop 37(2):177-190.

Gharnit N, Ennabili A (2015). Categories of carob tree (Ceratonia siliqua L.) from Morocco. International Journal of Fruit Science 16(3):259- 274. https://doi.org/10.1080/15538362.2015.1102674

Haddarah A, Ismail A, Bassal A, Hamieh T, Ioannou I, Ghoul M (2013). Morphological and chemical variability of Lebanese carob varieties. European Scientific Journal 9(18):353-369. https://doi.org/10.19044/esj.2013.v9n18p%p

Haro H, Sanon KB, Le Roux C, Duponnois R, Traoré AS (2017). Improvement of cowpea productivity by rhizobial and mycorrhizal inoculation in Burkina Faso. Symbiosis 1-14. https://doi.org/10.1007/s13199- 017-0478-3

Haro H, Semde K, Bahadio K, Sanon KB (2020). Effect of mycorrhizal inoculation with arbuscular mycorrhizal fungi strains on Mucuna pruriens (L.) DC growth under controlled condition. International Journal of Biological and Chemical Sciences 14(3):1065-1073.

Kasaka D, Onautshu O, Muliwambene K, Lebisabo B, Baert G, Swennen R, Haesaert G, Dhed'a D (2021). Importance and diversity of Mycorrhizae under plantain cultivation in the slash-and-burn and non-burn cropping systems in the forest region of Kisangani, Tshopo Province, Congo. African Journal of Agricultural Research 17(6):809-821. https://doi.org/10.5897/AJAR2020.15411.

Kchikich A, Mrid RB, Kabach I, Nhiri M, Omari RE (2021). Arbuscular mycorrhizal fungi enhance sorghum plant growth under nitrogen deficient conditions through activation of nitrogen and carbon metabolism enzymes. International Journal of Agriculture and Biology 26:201‒208. https://doi.org/10.17957/IJAB/15.1825

Liu RC, Xiao ZY, Hashem A, Abd Allah EF, Xu YJ, Wu QS (2021). Unraveling the interaction between arbuscular mycorrhizal fungi and Camellia plants. Horticulturae 7(9):322. https://doi.org/10.3390/horticulturae7090322.

Makris DP, Kefalas P (2004). Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technology and Biotechnology 42(2):105-108.

Manaut N, Sanguin H, Ouahmane L, Bressan M, Thioulouse J, Baudoin E, Galiana A, Hafidi M, Prin Y, Duponnois R (2015). Potentialities of ecological engineering strategy based on native arbuscular mycorrhizal community for improving afforestation programs with carob trees in degraded environments. Ecological Engineering 79:113-119. https://doi.org/10.1016/j.ecoleng.2015.03.007

Manga A, Ndiaye F, Diop TA (2017). Le champignon arbusculaire Glomus aggregatum améliore la nutrition minérale d’Acacia seyal soumis au stress salin progressif. International Journal of Biological and Chemical Science 11(5):2352-2365. https://doi.org/10.4314/ijbcs.v11i5.32

Mortier E (2021). Impact de la fertilisation phosphatée et de la mycorhization arbusculaire sur le développement de porte-greffes de noyers fruitiers micropropagés (Impact of phosphate fertilization and arbuscular mycorrhization on the development of micropropagated walnut tree rootstocks). PhD Thesis. Franche-Comté Univ, Bourgogne.

Nia S, Addi M, Abid M, Belkoura I (2021). Effect of pre-sowing treatments and basal media on in vitro carob (Ceratonia siliqua L.) seed germination. Journal of Biotech Research 12:74-82.

Nouaim R, Chaussod R (1994). Mycorrizal dependency of micropropagate d’Argan tree (Argania spinosa). Growth and biomass production. Agroforestry Systems 27:53-65. https://doi.org/10.1007/BF00704834

Outamamat E, Dounas H, Aziz F, Barguaz A, Duponnois R, Ouahmane L (2021). The first use of morphologically isolated arbuscular mycorrhizal fungi single-species from Moroccan ecosystems to improve growth, nutrients uptake and photosynthesis in Ceratonia siliqua seedlings under nursery conditions. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2021.11.049.

Palaiogianni A, Stylianou M, Sarris D, Agapiou A (2022). Carob-agro-industrial waste and potential uses in the circular economy. In: Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Technological Applications. Cham: Springer International Publishing, pp 765-797.

Rejeb MN (1992). Etude des mécanismes de résistances à la sécheresse du caroubier (Ceratonia siliqua L.) en Tunisie (Study of drought resistance mechanisms of the carob tree (Ceratonia siliqua L.) in Tunisia). PhD Thesis. Faculty of Sciences, Manar Univ, Tunis.

Riedacker A (1979). Etude de la déviation des racines horizontales ou obliques issues de bouture de peuplier qui rencontrent un obstacle: application pour la conception de conteneurs (Study of the deviation of horizontal or oblique roots from poplar cuttings which encounter an obstacle: application for the design of containers). Annales Sciences Forestières 351:18.

Ryan MH, Graham JH (2018). Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytologist 220:1092-1107. https://doi.org/10.1111/nph.15308

Slama A, Fkiri S, Fortas Z, Nasr Z, Khaldi A (2021). Morphological responses of Quercus suber L. and Q. coccifera L. seedlings to mycorrhization with desert truffle Terfezia boudieri Chatin. Journal of Material Environmental Science 12(9):1165-1175.

Slama A, Gorai M, Fortas Z, Boudabous A, Neffati M (2012). Growth, root colonization and nutrient status of Helianthemum sessiliflorum Desf. inoculated with a desert truffle Terfezia boudieri Chatin. Saudi Journal of Biological Science 19:25-29. https://doi.org/ 10.1016/j.sjbs.2011.04.003

Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1982). Les endomycorhizes en agriculture; recherché sur le blé (Endomycorrhizae in agriculture: researched on wheat). In INRA (Eds). Les mycorhizes. France pp 251-255.

Yan H, Li K, Ding H, Liao C, Li X, Yuan L, Li C (2011). Root morphological and proteomic responses to growth restriction in maize plants supplied with sufficient N. Journal of Plant Physiology 168(10):1067-1075. https://doi.org/10.1016/j.jplph.2010.12.018

Zhang Y, Ning P (2022). Differential root response of maize inbred seedlings to root growth restriction and phosphorus availability. Biologia 1-9. https://doi.org/10.1007/s11756-022-01174-9

Zouari N, El Mtili N (2020). Effects of ectomycorrhizal fungal inoculation on growth and rooting of carob tree (Ceratonia siliqua L.). South African Journal of Botany 135:181-187. https://doi.org/10.1016/j.sajb.2020.08.025

Published

2023-02-20

How to Cite

KANFOUD, F., SLAMA, A., TOUHAMI, I., AYARI, A., HAJLAOUI, I., KOUJA, M. L., & ELAIEB, M. T. (2023). Mycorrhization and root excision effects on morphological and biomass production of carob (Ceratonia siliqua L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 12835. https://doi.org/10.15835/nbha51112835

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha51112835

Most read articles by the same author(s)