In vitro callogenesis essays to induce somatic embryogenesis of the Tunisian chickpea


  • Samiha KAHLAOUI University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Biodiversity, Biotechnology and Climate Change (LR11-ES09), 1060 Tunis (TN)
  • Badra BOUAMAMA-GZARA Center of Biotechnology of Borj Cedria, Laboratory of Plant Molecular Physiology, BP. 901, 2050, Hammam-Lif (TN)
  • Hana BOKRI University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Biodiversity, Biotechnology and Climate Change (LR11-ES09), 1060 Tunis (TN)
  • Fethia HARZALLAH-SKHIRI University of Monastir, Laboratory of Bioresources: Integrative Biology and Valorization (LR14-ES06), High Institute of Biotechnology of Monastir, 5000 Monastir (TN)
  • Sondes STAMBOULI-ESSASSI University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Biodiversity, Biotechnology and Climate Change (LR11-ES09), 1060 Tunis (TN)



callogenesis, chickpea, explants, phytohormones, somatic embryo


The present study was the first report on the somatic embryogenesis of the Tunisian chickpea (Cicer arietinum L.) particularly supposed to be recalcitrant and difficult to manipulate in vitro. An efficient protocol has been developed for inducing indirect somatic embryogenesis derived from immature zygotic embryo axis, young leaflet and hypocotylar explants. Callogenesis was achieved on full-strength Murashige and Skoog's (1962) (MS) basal medium supplemented with two auxin/cytokinin combinations; 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-furfurylamonopurine (KIN) or 1-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP) to establish the phytohormones requirement to promote the best induction of friable calli. For somatic embryos induction, embryogenic calli developed from zygotic embryo axes, leaflet and hypocotylar explants were cultured on MS full strength and MS/2, half strength, free of phytohormones media. This study found that all explants exhibited high frequency of callus induction. For immature zygotic embryo axes and young leaflet explants, media containing the combination of 2,4-D and KIN were best effective for inducing callogenesis and friable calli. The most important embryogenic callus percentages were obtained on the culture medium containing the highest concentrations of 2,4-D (2 mg L-1) and KIN (0.5 mg L-1). However, media containing the combination NAA and BAP were best effective for inducing embryogenic calli on hypocotylar explants. A maximal rate of embryogenic calli was reached on medium containing 3 mg L-1 NAA and 1 mg L-1 BAP. The highest number of somatic embryos was obtained with embryogenic calli derived from embryo axis explants and cultured on MS half strength free phytohormones medium. About 56% of somatic embryos converted successfully into fertile plantlets.


Aasim M, Day S, Rezaei F, Hajyzadeh M (2013). Multiple shoot regeneration of plumular apices of chickpea. Turkish Journal of Agriculture and Food Research 37:33-39.

Aasim M, Khan AA (2019). Nutritional values, benefits and multiple uses of desi chickpea. In: Lund AT, Schultz ND (Eds). Handbook of chickpeas: nutritional value, health benefits and management. Nova Publications, United States pp 57-73.

Alghamdi SS, Dewir YH, Khan MA, Migdadi H, EL-Harty EH, Aldubai AA, Al-Aizari AA (2020). Micropropagation and germplasm conservation of four chickpea (Cicer arietinum L.) genotypes. Chilean Journal of Agricultural Research 80(4):487-495.

Al-Snafi AE (2016). The medical importance of Cicer arietinum: a review. IOSR Journal of Pharmacy 6:29-40.

Al-Tanbouz RI (2013). In vitro regeneration of local chickpea varieties in Palestine. PhD Thesis, Ann-Najah National Univ, Palestine.

Al-Tanbouz RI, Abu-Qauod H (2016). In vitro regeneration of chickpea (Cicer arietinum L.). Plant Cell Biotechnology and Molecular Biology 17:21-30.

Amri M, Bouhadida M, Halila MH, Kharrat M (2014). Chickpea cropping and breeding program: An overview on the Tunisian situation. Legume Perspectives 3:58-61.

Anwar F, Sharmila P, Saradhi PP (2010). No more recalcitrant: chickpea regeneration and genetic transformation. African Journal of Biotechnology 9(6):782-797.

Aouani ME, Mhamdi R, Jebara M, Amarger N (2001). Characterization of rhizobia nodulating chickpea in Tunisia. Agronomie 21:577-581.

APG IV (Angiosperm Phylogeny Group) (2016). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181:1-20.

Arora A, Chawla HS (2005). Organogenic plant regeneration via callus induction in chick-pea (Cicer arietinum). Role of genotypes, growth regulators and explants. Indian Journal of Biotechnology 4:251-256.

Bahgat S, Shabban OA, El-Shihy O, Lightfoot DA, El- Shemy HA (2009). Establishment of the regeneration system for Vicia faba L. Molecular Biology 11(1):47-54.

Banu TA, Sarker RH, Hoque MI (2011). In vitro plant regeneration of four local varieties of chickpea (Cicer arietinum L.) grown in Bangladesh. Bangladesh Journal of Scientific and Industrial Research 46:379-384.

Barna KS, Wakhlu AK (1993). Somatic embryogenesis and plant regeneration from callus cultures of chickpea (Cicer arietinum L.). Plant Cell Reports 12:521-524.

Barna KS, Wakhlu AK (1995). Modified single node culture method a new micropropagation method for chickpea. In Vitro Cellular and Developmental Biology Plant 31:150-152.

Berger JD, Turner NC (2007). The ecology of chickpea: evolution, distribution, stresses and adaptation from an agro-climatic perspective. In: Yadav SS, Redden R, Chen W, Sharma B (Eds). Chickpea Breeding and Management. CABI, Wallingford, UK pp 47-71.

Bhattacharya S, Bandopadhyay TK, Ghosh PD (2010). Somatic embryogenesis in Cymbopogon pendulus and evaluation of clonal fidelity of regenerants using ISSR marker. Scientia Horticulturae 123:505-513.

Bouamama B, Ben Salem A, Ben Jouira H, Ghorbel A, Mliki A (2007). Influence of the flower stage and culture medium on the induction of somatic embryogenesis from anther culture in Tunisian grapevine cultivars. Journal International des Sciences de la Vigne et du Vin 41(4):185-192.

Bouamama B, Jardak R, Ben Salem A, Ghorbel A, MlikiA (2009). Preservation of endangered Tunisian grapevine cultivars using embryogenic cultures. Electronic Journal of Biotechnology 12(2):1-10.

Bourgaud F, Gravot A, MilesiS, Gontier E (2001). Production of plant secondary metabolites: A historical perspective. Plant science 161:839-851.

Brandt EB, Hess D (1994). In vitro regeneration and propagation of chickpea (Cicer arietinum L.) from meristem tips and cotyledonary nodes. In Vitro Cellular and Developmental Biology Plant 30:75-80.

Cakir O, Uçarli C, Tarhan C, Pekmez M, Turgut-Kara N (2019). Nutritional and health benefits of legumes and their distinctive genomic properties. Food Science and Technology 39(1):1-12.

Chakraborti D, Sarkar A, Das S (2006). Efficient and rapid in vitro plant regeneration system for Indian cultivars of chickpea (Cicer arietinum L.). Plant Cell Tissue and Organ Culture 86(1):117-123.

Chandra R, Chatrath A, Polisetty R, Khetarpal S (1993). Differentiation of in vitro grown explants of chickpea (Cicer arietinum L.). Indian Journal of Plant Physiology 36:121-124.

Chauhan R, Singh NP (2002). Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). Indian Journal of Genetics and Plant Breeding 62(04):319-321.

Chebbi HE, Pellissier JP, Khechimi W, Rolland JP (2019). Rapport de synthèse sur l’agriculture en Tunisie [Synthesis report on agriculture in Tunisia]. Ciheam-iamm, Tunisia.

Duncan DB (1955). Multiple range and multiple F-tests. Biometrics 11:1-42.

Fikre A, Desmae H, Ahmed S (2020). Tapping the economic potential of chickpea in sub-Saharan Africa. Agronomy 10(1707):1-22.

Food and Agriculture Organization of the United Nations (FAO) (2018). The state of the food security and nutrition in the world: Building climate resilience for food security and nutrition. Food and Agriculture Organization, Rome.

Gamborg OL, Miller R, Ojima K (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 50(1):151-158.

Ganguly S, Ghosh G, Ghosh S, Purohit A, Chaudhuri RK. Das S, Chakraborti D (2020). Plumular meristem transformation system for chickpea: an efficient method to overcome recalcitrant tissue culture responses. Plant Cell Tissue and Organ Culture.

George EF, Hall MA, De Klerk GJ (2008). Plant propagation by tissue culture. Springer, Dordrecht (3rd ed), Netherlands.

Ghribi AM, Maklouf I, Blecker C, Attia H, Besbes S (2015). Nutritional and compositional study of desi and kabuli chickpea (Cicer arietinum L.) flours from Tunisian cultivars. Advances in Food Technology and Nutritional Sciences Open Journal 1:38-47.

Gurjar G, Mishra M, Kotkar H, Upasani M, Soni P, Tamhane V, ... Gupta V (2011). Major biotic stresses of chickpea and strategies for their control. In: Dashavantha Reddy V, Poduri NR, Khareedu VR (Eds). Management Strategies Pests. CRC Press, Boca Raton pp 87-134.

Guru SK, Chandra R, Raj A, Kethrapal S, Polisetty R (2004). Evolution of eyhylene and methane in relation to somatic embryogenesis. Biologia Plantarum 42:149-154.

Huda S, Islam R, Bari MA, Asaduzzaman M (2001). Anther culture of chickpea. International Chickpea and Pigeonpea Newsletter 8:24-26.

Hussain T, Fatima T, Islam R, Riazuddin S (2000). Plant regeneration and expression of Beta-glucuronidase gene in hypocotyls tissue of chickpea (Cicer arietinum L.). Pakistan Journal of Biological Sciences 3(5):842-845.

Jayanand B, Sudarsanam G, Sharma KK (2003). An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explants derived from in vitro germinated seedlings. In Vitro Cellular and Developmental Biology Plant 39:171-179.

Jha UC, Chaturvedi SK, Bohra A, Basu PS, Khan MS, Barh D (2014). Abiotic stresses, constraints and improvement strategies in chickpea. Plant Breed 133(2):163-178.

Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.)-a review. British Journal of Nutrition 108(1):11-26.

Kadiri A, Halfaoui Y, Bouabdallah L, Ighilhariz Z (2014). Chickpea (Cicer arietinum L.) in vitro micropropagation. Türk Tarımve Doğa Bilimleri Dergisi 1:1304-1309.

Kaloki P, Devasirvatham V, Tan DKY (2019). Chickpea abiotic stresses: combating drought, heat and cold. In: De Oliveira AB (Ed). Abiotic and biotic stress in plants. University of Sydney, Australia pp 1-24.

Khamassi K, Bettaiëb Ben Kaab L, Khoufi S, Chaabane R, Jaime A, Teixeira Da Silva I, … Ben Naceur M (2012). Morphological and molecular diversity of Tunisian chickpea. European Journal of Horticultural Science 77(1):31-40.

Kiran Ghanti S, Kaviraj CP, Jogeswar G, Kishor KVK, Rao S (2005). Direct and high frequency somatic embryogenesis and plant regeneration from hypocotyls of chickpea (Cicer arietinum L.), a grain legume. Current Science 89:1012-1018.

Kiran Ghanti S, Sujata KG, Rao MS, Kishor PK (2010). Direct somatic embryogenesis and plant regeneration from immature explants of chickpea. Plant Biology 54(1):121-125.

Kirtis A, Aasim M (2019). Thidiazuron (TDZ) induced in vitro axillary shoot regeneration of desi chickpea (Cicer arietinum L.). Journal of Applied Biological Sciences 13(1):17-20.

Kirtis A, Aasim M (2020). In vitro axillary shoot regeneration from shoot tip explant of desi chickpea (Cicer arietinum L.). Journal of Global Innovations in Agricultural Sciences 8(2):65-69.

Ksia E, Harzallah-Skhiri F, Verdeil JL, Gouta H, Alemanno L, Bouzid S (2008). Somatic embryo production from immature seeds of carob (Ceratonia siliqua L.): histological evidence. Journal of Horticultural Science and Biotechnology 83(4):401-406.

Kumar VD, Kirti PB, Sachan JKS, Chopra VL (1994). Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Cell Reports 13:468-472.

Kumar PA, Bisaria S, Pai RA, Sharma RP (1995). Comparative shoot regeneration in different genotypes of chickpea, Cicer arietinum L. Indian Journal of Experimental Biology 33:77-78.

Kumar S, Kapoor V, Gill K, Singh K, Das SN, Dey S (2014). Antifungal and antiproliferative protein from Cicer arietinum: a bioactive compound against emerging pathogens. BioMed Research International 387203.

Le Floc’h E, Boulos L, Véla E (2010). Catalogue Synonymique Commenté de la Flore de Tunisie [Commented Synonymous Catalog of the Tunisian Flora]. Ministère de l’Environnement et du Développement durable, Banque Nationale de Gènes, République Tunisienne.

Madrid E, Bouhadida M, Dolar FS, Kharrat M, Houasli C (2015). Chickpea production in Mediterranean basin. International Legume Society, Cordoba, Spain.

Madurapperumage A, Tang L, Thavarajah P, Bridges W, Shipe E, Vandemark G and Thavarajah D (2021). Chickpea (Cicer arietinum L.) as a source of essential fatty acids - a biofortification approach. Frontiers in Plant Science 12:734980.

Magee J, Owusu AR, McCann MJ, Gill CIR (2012). Chickpea (Cicer arietinum) and other plant-derived protease inhibitor concentrates inhibit breast and prostate cancer cell proliferation in vitro. Nutrition and Cancer 741-748.

Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, Avilez-Montalvo J, ... Loyola-Vargas VM (2019). Signaling overview of plant somatic embryogenesis. Frontiers in Plant Science 10(77):1-15.

Merga B, Haji J (2019). Economic importance of chickpea: Production, value, and world trade. Cogent Food and Agriculture 5:1.

Mishra S, Sanyal I, Amla DV (2012). Changes in protein pattern during different developmental stages of somatic embryos in chickpea. Plant Biology 56:613-619.

Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 15:473-497.

Murthy BNS, Jerrin V, Rana PS, Filetcher RA, Praveen KS (1996). In vitro regeneration of chickpea (Cicer arietinum L.): stimulation of direct organogenesis and somatic embryogenesis by thidiazuron. Plant Growth Regulation 19:233-240.

Naz S, Ali A, Siddique FA, Iqbal J (2008). Somatic embryogenesis from immature cotyledons and leaf calli of chickpea (Cicer arietinum L.). Pakistan Journal of Botany 48(2):523-531.

Nhut DT, Vinh BVT, Hien TT, Huy NP, Nam NB, Chien HX (2012). Effects of spermidine, proline and carbohydrate sources on somatic embryogenesis from main root transverse thin cell layers of Vietnamese ginseng (Panax vietnamensis Ha et. Grushv.). African Journal of Biotechnology 11(5):1084-1091.

Othmani A, Bayoudh C, Al-Khayri JM, DriraN (2018). Cyclic somatic embryogenesis in date palm (Phoenix dactylifera L.). cv Degletbey (Mnakher). Journal of New Sciences Agriculture and Biotechnology 51(9):3204-3213.

Osuji C, Abubakar S, Mowobi G (2016). The place of somatic embryogenesis in crop improvement through genetic transformation. Journal of Environment and Life Sciences 1(1):1-7.

Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science 8:1-15.

Parveen S, Venkateshwarlu M, Srinivas D, Reddy KJM, Ugandhar T (2012). Direct in vitro shoots proliferation of chickpea (Cicer arietinum L.) from shoot tip explants induced by Thidiazuron. Bioscience Discovery 3:1-5.

Paul V, Chandra R, Khetarpal S, Polisetty R (2000). Effect of BAP induction period on shoot differentiation from seeding explants of chickpea (Cicer arietinum L.). Journal of Plant Biology 27(3): 235-239.

Peoples MB, Williams M (2019). The contributions of legumes to reducing the environmental risk of agricultural production. Agroecosystem Diversity, pp 123-143.

Peoples MB, Swan AD, Goward L, Kirkegaard JA, Hunt JR, Li GD, … Khan DF (2017). Soil mineral nitrogen benefits derived from legumes and comparisons of the apparent recovery of legume or fertiliser nitrogen by wheat. Soil Research 55(6):600-615.

Philips GC, Gamborg OL (2005). Plant cell tissue and organ culture. Mehra NK (Ed). Narosa publishing house 6, community centre, New Delhi, India, pp 91-93.

Polisetty R, Patil P, Deveshwar JJ, Khetarpal S, Chandra R (1996). Rooting and establishment of in vitro shoot tip explants of chickpea (Cicer arietinum L.). Indian Journal of Experimental Biology 34(8):806-809.

Polisetty R, Paul V, Deveshwar JJ, Khetarpal S, Suresh K, Chandra R (1997). Multiple shoot induction by benzyladenine and complete plant regeneration from seed explants of chickpea (Cicer arietinum L.). Plant Cell Reports 16:565-571.

Prakash S, Chowdhury JB, Yadav NR, Jain RK, Chowdhury VK (1994). Somatic embryogenesis in suspension cultures of chickpea. Annals of Biology 10:7-14.

Ramana RV, Venu CH, Jayasree T, Sadandam A (1996). Direct somatic embryogenesis and transformation in Cicer arietinum L. Indian Journal of Experimental Biology 34:716-718.

Rao BG (1990). Regeneration from induced embryoids of gram (Cicer arietinum). Advances in Plant Sciences 3(2):299-302.

Rao BG (1991). Influence of explants and its stages of development on response for somatic embryogenesis in chickpea. Advances in Plant Sciences 4:43-47.

Rao DLN, Giller KE, Yeo AR, Flowers TJ (2002). The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea (Cicer arietinum L.). Annals of Botany 89(5):563-570.

Ratjens S, Mortensen S, Kumpf A, Bartsch M, Winkelmann T (2018). Embryogenic callus as target for efficient transformation of Cyclamen persicum enabling gene function studies. Frontiers in Plant Science 9:1035.

Rekha KT, Thiruvengadam M (2009). An efficient micropropagation of chickpea (Cicer arietinum L.). Philippine Agricultural Scientist 95(3):320-326.

Rhimi A, Ben Fadhel N, Boussaid M (2006). Plant regeneration via somatic embryogenesis from in vitro tissue culture in two Tunisian Cucumis melo cultivars Maazoun and Beji. Plant Cell Tissue and Organ Culture 84:239-243.

Richa C, Singh NP (2002). Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). The Indian Journal of Genetics and Plant Breeding 62(4):319-321.

Rizvi SMH, Singh RP (2000). In vitro plant regeneration from immature leaflet-derived callus cultures of Cicer arietinum L. via organogenesis. Plant Cell Biotechnology and Molecular Biology 1(3/4):109-114.

Rizvi SMH, Jaiwal PK, Singh RP (2002). A possible involvement of cellular polyamine level in thidiazuron induced somatic embryogenesis in chickpea. In: Role of plant tissue culture in biodiversity conservation economic development. Nandi SK, Palni LMS, Kumar A (Eds), Gyanodaya Prakashan, Nainital, India, pp 163-175.

Sagare AP, Suhasini K, Krishnamurthy KV (1993). Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Cell Reports 12:652-655.

Sagare AP, Suhasini K, Krishnamurthy KV (1999). Comparative study of the development of zygotic and somatic embryos of chickpea (Cicer arietinum L.). In: Kishore K (Ed). Plant tissue culture and biotechnology emerging trends. University Press, India, pp 56-63.

Sargın SA, AkçiçekE, Selvi S (2013). An ethnobotanical study of medicinal plants used by the local people of Alaşehir (Manisa) in Turkey. Journal of Ethnopharmacology 150(3):860-874.

SDBH (2020). Pour une Stratégie sur la Diversité Biologique à l’Horizon 2020 [For a Strategy on Biological Diversity by Horizon 2020]. Document de synthèse, Tunisia.

Segev A, Badani H, Galil L, Hovav R, Kapulnik Y, Shomer I, Galili S (2011). Total phenolic content and antioxidant activity of chickpea (Cicer arietinum L.) as affected by soaking and cooking conditions. Food and Nutrition Sciences 2:724-730.

Sezik E, Yeşilada E, Honda G, Takaishi Y, Takeda Y, Tanaka T (2001). Traditional medicine in Turkey X. Folk medicine in Central Anatolia. Journal of Ethnopharmacology 75:95-115.

Sharma KK, Bhatnagar-Mathur P, Jayanand B (2006). Chickpea (Cicer arietinum L.). Methods in Molecular Biology 343:313-323.

Shukla A, Das A, Ansari J, Datta S (2015). In vitro regeneration of chickpea (Cicer arietinum L.) via somatic embryogenesis. Journal of Food Legumes 28(3):199-202.

Shri PV, Davis TM (1992). Zeatin-induced shoot regeneration from immature chickpea (Cicer arietinum L.) cotyledons. Plant Cell Tissue and Organ Culture 28:45-51.

Singh AK, Chand S (2003). Somatic embryogenesis and plant regeneration from cotyledon explants of a timber-yielding leguminous tree, Dalbergia sissoo Roxb. Journal of Plant Physiology 160:415-421.

Singh R, Singh Jat R, Sahoo PD, Srinivasan R (2002). Thidiazuron induced multiple shoot formation in chickpea (Cicer arietinum L). Journal of Plant Biochemistry and Biotechnology 11(2):129-131.

Singh M, Bisht IS, Dutta M, KumarK, Basandrai AK, Kaur L, ... Bansal KC (2014a). Characterization and evaluation of wild annual Cicer species for agro-morphological traits and major biotic stresses under northwestern Indian conditions. Crop Science 54:229-239.

Singh S, Singh I, Kapoor K, Gaur PM, Chaturvedi SK, Singh NP, Sandhu JS (2014b). Chickpea. In: Singh M, Bisht IS, Dutta M (Eds). Broadening the Genetic Base of Grain Legumes. Springer, India pp 51-73.

Sleimi N, Lachaâl M, Abdelly C (1999). Responses of some Tunisian chickpea varieties (Cicer arietinum) to salinity in nutrient solution. International Chickpea and Pigeonpea Newsletter 6:23-26.

Sleimi N, Lachaâl M, Abdelly C, Soltani A, Hajji M (2001). Physiological behaviour of two chickpea varieties irrigated with saline nutrient solution. Plant Nutrition. Developments in Plant and Soil Sciences 92:408-409.

Sudha Vani AK, Reddy VD (1996). Morphogenesis from callus cultures of chickpea (Cicer arietinum L.). Indian Journal of Experimental Biology 34:285-287.

Suhasini K, Sagare AP, Krishnamurthy KV (1994). Direct somatic embryogenesis from mature embryo axis in chickpea (Cicer arietinum L.). Plant Science 102(2):189-194.

Sunil SP, Robinson JP, KarthickBalan SS, Anandhaprabhakaran M, Balakrishnan V (2015). In vitro regeneration and induction of multiple shooting in Cicer arietinum L. using cotyledonary nodal explants. African Journal of Biotechnology 14(3):1129-1138.

Ugandhar T, Venkateshwarlu M, Sammailah D, Reddy JM (2012). Rapid in vitro micropropagation of chickpea (Cicer arietinum L.) from shoot tip and cotyledonary node explants. Journal of Biotechnology and Biomaterials 2(6):1-6.

Trigiano RN, Gray DJ (2005). Plant Development and Biotechnology. CRC Press (1st ed), United States.

Van der Maesen LJG, Maxted N, Javadi F, Coles S, Davies AM (2007). Taxonomy of Cicer revisited. In: Yadav SS, ReddenR, ChenW, Sharma B (Eds). Chickpea Breeding and Management. Wallingford, CABI, pp 14-46.

Veltcheva M, Svetleva D, Petkova SP, Perl A (2005). In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.)-Problems and progress. Scientia Horticulturae 107(1):2-10.

Wood JA, Grusak MA (2007). Nutritional value of chickpea (Chapter 5). In: Chickpea breeding and management Wallingford, UK, CAB International, pp 101-142.

Yadav IS, Singh NP (2012). An effective protocol for improved regeneration capacity of kabuli chickpeas. Canadian Journal of Plant Science 92(6):1057-1064.

Yousefiara M, Bagheri A, Moshtaghi N (2008). Optimizing regeneration condition in chickpea (Cicer arietinum L.). Pakistan Journal of Biological Sciences 11:1009-1014.

Zare Mirakabad H, Bagheri AR, Zare Mehrjerdi M (2010). Efficient protocol for break impasses of regeneration via callus for 20 genotypes of chickpea. International Journal of Plant Production 4(2):115-128.



How to Cite

KAHLAOUI, S., BOUAMAMA-GZARA, B., BOKRI, H., HARZALLAH-SKHIRI, F., & STAMBOULI-ESSASSI, S. (2022). In vitro callogenesis essays to induce somatic embryogenesis of the Tunisian chickpea. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(4), 12819.



Research Articles
DOI: 10.15835/nbha50312819