Antioxidant activity and bio compounds induced by salicylic acid and potassium from ‘Flame’ grapes

Authors

  • Kevin E. VAZQUEZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Campus Universitario 1, CP 31530, Chihuahua (MX)
  • María A. FLORES-CORDOVA Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Campus Universitario 1, CP 31530, Chihuahua (MX)
  • Juan M. SOTO-PARRA Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Campus Universitario 1, CP 31530, Chihuahua (MX)
  • Esteban SÁNCHEZ Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias, C.P. 33089, Chihuahua (MX)
  • Mayra C. SOTO-CABALLERO Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Campus Universitario 1, CP 31530, Chihuahua (MX)
  • Nora A. SALAS-SALAZAR Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Campus Universitario 1, CP 31530, Chihuahua (MX)
  • María J. RODRÍGUEZ-ROQUE Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Campus Universitario 1, CP 31530, Chihuahua (MX)
  • Sandra PÉREZ ÁLVAREZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agricolas y Forestales, Km 2.5, carretera Delicias-Rosales, campus Delicias, CP. 33000. CD. Delicias, Chihuahua (MX)

DOI:

https://doi.org/10.15835/nbha50212756

Keywords:

anthocyanins, physicochemical parameters, Vitis vinifera

Abstract

The objective of this study was to determine the antioxidant activity and bio compounds induced by salicylic acid (AS) and potassium (K) in ‘Flame’ grape peel and pulp. The applications were made in table grape of the ‘Flame’ variety, with 9 treatments and 3 repetitions, T1 control 0.0 (T2 AS 0.0, K 5 mM) (T3 AS 2.0, K 5.0 mM) (T4 AS 2.0, K 0 mM) (T5 AS 0.100, K 0.250 mM) (T6 AS 0.100, K 2. 50 mM) (T7 AS 1, K 2. 50 mM) (T8 AS 1, K .250 mM) (T9 AS 0. 25, K .625 mM) with 6 applications in the veraison stage throughout the cycle. The parameters of antioxidant capacity were determined by the DPPH and FRAP method, phenols, anthocyanins, flavonoids, pH, oBrix, titratable acidity and physical parameters in grape peel and pulp. Doses of AS 2.0, K 0 mM; AS 1, K 2.50 mM; and AS 0.25, K .625 mM influenced the increase in quality, as well as the bioactive and antioxidant activity. Anthocyanins were the main phenols in peel with 406.08 mg (C3G)/g-1. ‘Flame’ table grape peels have a high content of compounds, favouring the antioxidant activity. A serving of unpeeled table grapes could provide up to 110 mg of phenols. The use of salicylic acid and potassium can be an alternative to enrich the nutritional quality of the grape and benefit the health of the population.

References

Association of Official Analytical Chemist (AOAC) (2000). Oficial Methods of Analysis (17th). Ed. AOAC International. Guithersbur, MD, EE, UU https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1687699

Cakmak I (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science 168:521-530. https://doi.org/10.1002/jpln.200420485

Cantos EJC, Espín FA, Tomás-Barberán (2002). Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS. Journal Agriculture Food Chemistry 50:5691-5696. https://doi.org/10.1021/jf0204102

Castillo CJE, Gutiérrez RSE (2014). Capacidad antioxidante y calidad de seis cultivares de uva de mesa. Tesis de Licenciatura, Universidad de Sonora. Hermosillo, Sonora, México. Pp 77.

Cosme F, Pinto T, Vilela A (2018). Phenolic compounds an antioxidant activity in grape juices, A chemical and sensory view. Beverages, 4(1):1-22. https://doi.org/10.3390/beverages4010022

Chaves SDM (2016). Evaluación del extracto de la uva Vitis vinífera como antioxidante en papa pastusa suprema mínimamente procesada. Tesis de licenciatura. Universidad la Salle. Pp 95. https://ciencia.lasalle.edu.co/ing_alimentos/130/

Díaz VDA, Salas PL, Preciado RP, Segura CMA, González FJA, Valenzuela-García JR (2016). Efecto del ácido salicílico en la producción y calidad nutracéutica de frutos de tomate. Revista Mexicana de Ciencias Agrícolas 17:3405-3414. https://www.redalyc.org/pdf/2631/263149506002.pdf

Devi BSR, Kim YJ, Selvi SK, Gayathri S, Altanzul K, Parvin S, … Yang DC (2012). Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng. Russ. Journal Plant Physiology 59:318-25. https://doi.org/10.1134/S1021443712030041

Dorey E, Fournier P, Léchaudel M, Tixier P (2016). A statistical model to predict titratable acidity of pineapple during fruit developing period responding to climatic variables. Science Horticulturae 210:19-24. http://dx.doi.org/10.1016/j.scienta.2016.07.014

Fernández RM (2019). Efecto de los tratamientos con salicilatos sobre compuestos bioactivos en uva Crimson. Tesis de maestría. Universidad Miguel Hernández de Elche. Orihuela, pp 26.

Franco-Bañuelos A, Contreras-Martínez CS, Carranza-Téllez J, Carranza-Concha J (2017). Total phenolic content and antioxidant capacity of non-native wine grapes grown in Zacatecas, México. Agrociencia 51(6):661-671.

Franco-Bañuelos A, Hernández-Trujillo S, Contreras-Martínez CS, Carranza-Téllez J, Carranza-Concha J (2019). Uso de reguladores de crecimiento en el contenido fenólico total y la capacidad antioxidante de la uva red globe. Agrociencia 53:881-894.

García Pastor ME, Serrano M, Guillen F, Castillo S, Martínez-Romero D, Valero V, Zapata PJ (2019). Methyl jasmonate effects on table grape ripening, vine yield, berry quality and bioactive compounds depend on applied concentration. Scientia Horticulturae 247:380-389. https://doi.org/10.1016/j.scienta.2018.12.043

Glowaez M, Rees D (2016). Using jamonates and salicylates to reduce losses within the fruit supply chain. European Food Research and Technology 242(2):143-156. https://doi.org/10.1007/s00217-015-2527-6

González G (2016). Composición fenólica y actividad antioxidante de las hojas de Mosiera crenulata. Tesis de licenciatura. Universidad Central de Marta Abreu de las villas facultad de química-Farmacia. Pp 90.

Fortes GE, Mattivi F, Ferreira MA, Vrhovsek U, Pedrosa RC, Bordignon-Luiz MT (2011). Proanthocyanidin profile and antioxidant capacity of Brazilian Vitis vinifera red wines. Food Chemistry 126:213-220. https://doi.org/10.1016/j.foodchem.2010.10.102

Hernández JD, Trujillo Y, Daniel NIS, Durán O (2011). Contenido fenólico e identificación de levaduras de importancia vínica de la uva Isabella (Vitis labrusca) procedente de Villa del Rosario (Norte de Santander). VITAE, Revista De La Facultad De Química Farmacéutica 18(1):17-25.

INEGI (2013). Instituto Nacional de Estadística, Geografía e Informática. Estadísticas de mortalidad. https://www.inegi.org.mx/rnm/index.php/catalog/178

Khandaker L, Masum ASMG, Shinya O (2011). Foliar application of salicylic acid improved the growth, yield and leaf’s bioactive compounds in red amaranth (Amaranthus tricolor l.) Vegetable Crops Research Bulletin 74:77-86 https://doi.org/10.2478/v10032-011-0006-6

Kook D (2018). Grape growth, anthocyanin and phenolic compounds content of early ripening cv. Cardinal table grape (V. vinifera L.) as affected by various doses of foliar biostimulant applications with gibberellic acid. Erwerbs-Obstbau 60(3):253-259. https://doi.org/10.1007/s10341-018-0366-x

Kuskoski EM, Asuero AG, Troncoso AM, Mancini-Filho J, Fett R (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciencia y Tecnología de Alimentos Campinas 25(4):726-732. https://doi.org/10.1590/S0101-20612005000400016

Lee J, Scagel CF (2010). Chicoric acid levels in commercial basil (Ocimum basilicum) and Echinacea purpurea products. Journal of Functional Foods 2:77-84. https://doi.org/10.1016/j.jff.2009.11.004

Lo’ay AA (2017). Preharvest salicylic acid and delay ripening of ‘superior seedless’ grapes. Egyptian Journal of Basic and Applied Sciences 4(3):227-230. https://doi.org/10.1016/j.ejbas.2017.04.006

Martínez-Valverde I, Periago MJ, Ros G (2000). Significado nutricional de los compuestos fenólicos de la dieta. Archivos Latinoamericanos de Nutrición. ALAN 50(1):5-18.

Meir S, Kanner J, Akiri B, Philosoph-Hadas S (1995) Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agriculture and Food Chemistry 43:1813-1819. https://doi.org/10.1021/jf00055a012

Molina-Quijada DMA, Medina-Juárez LA, González-Aguilar GA, Robles-Sánchez RM, Gámez-Meza N (2010). Compuestos fenólicos y actividad antioxidante de cáscara de uva (Vitis vinifera L.) de mesa cultivada en el noroeste de México. CyTA Journal of Food 8(1):57-63. https://doi.org/10.1080/19476330903146021

Puerto GO, Mejia de TS, Menjivar FJC, Puentes PYJ (2014). Influencia del potasio en el cultivo de la vid (Vitis labrusca) cv. Isabella. Informador Técnico (Colombia) 78(2):148-154. https://doi.org/10.23850/22565035.xx

Rubio CP, Hernández-Ruiz J, Martínez-Sbuela S, Tvarijonaviciute A, Ceron JJ (2016). Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: an update. BMC Veterinary Research 12(1):166. https://doi.org/10.1186/s12917-016-0792-7

Salisbury FB, Ross CW (1994). Fisiología Vegetal. In: González VV(Ed). Edit. Iberoamérica, México. pp 363-365.

Sandoval M, Lazarte K, Arnao I (2008). Hepatoprotección antioxidante de la cáscara y semilla de Vitis vinifera L. (uva). Anales de la Facultad de Medicina 69(4):250-259.

Singleton VL, Rossi JA (1965). Colorimetric of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American of Journal Enology and Viticulture 16:144-158.

Tilman D, Clark M (2014). Global diets link environmental sustainability and human health. Nature 515:518-522. https://doi.org/10.1038/nature13959

Vicente OM (2019). Determinación de capacidad antioxidante y fenoles totales en frutos de Vitis vinífera L. vid del valle de cañete. Tesis de Licenciatura, Universidad Nacional José Faustino Sánchez Carrión. Huacho. Pp 111. http://repositorio.unjfsc.edu.pe/handle/UNJFSC/3069

Wang Z, Ma L, Zhang X, Xu L, Cao J, Jiang W (2015). The effect of exogenous salicylic acid on antioxidant activity, bioactive compound and antioxidant system in apricot fruit. Scientia Horticulturae 181:113-121. https://doi.org/10.1016/j.scienta.2014.10.055

Wrolstad RE, (1976). Color and pigment analyses in fruit products. Station bulletin 624. Corvallis, OR: Agricultural Experiment Station Oregon State University.

Zhishen J, Mengcheng T, Jianming W (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64:555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Published

2022-06-30

How to Cite

VAZQUEZ, K. E., FLORES-CORDOVA, M. A., SOTO-PARRA, J. M., SÁNCHEZ, E., SOTO-CABALLERO, M. C., SALAS-SALAZAR, N. A., RODRÍGUEZ-ROQUE, M. J., & PÉREZ ÁLVAREZ, S. (2022). Antioxidant activity and bio compounds induced by salicylic acid and potassium from ‘Flame’ grapes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(2), 12756. https://doi.org/10.15835/nbha50212756

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha50212756

Most read articles by the same author(s)

1 2 3 > >>