Assessment of quality and chemical composition of continental halophytic grasslands in south-east Europe


  • Milica LUKOVIĆ University of Kragujevac, Faculty of Hotel Management and Tourism (RS)
  • Urban ŠILC ZRC SAZU, Institute of Biology, Ljubljana (SI)
  • Jovica VASIN Institute of Field and Vegetable Crops (RS)
  • Jasmina RADOVIĆ Institute for Forage Crops 37251 Globoder (RS)
  • Goran TOPISIROVIĆ University of Belgrade, Faculty of Agriculture (RS)
  • Marija KOSTIĆ University of Kragujevac, Faculty of Hotel Management and Tourism (RS)
  • Zora DAJIĆ STEVANOVIĆ University of Belgrade, Faculty of Agriculture (RS)



chemical composition, continental halophytic grasslands, suitability for utilization


Continental halophytic grasslands are known for performing of range of ecosystem services especially remarkable in the regions where they are much distributed – in arid and semi-arid areas. Continental halophytic grasslands of the Central and South-East Europe are not considered as favourable for arable farming, however, traditional animal husbandry plays a crucial role in maintaining biodiversity and preserving these natural habitats. The particular interest of this study is the assessment of the chemical composition of biomass and the quality of insufficiently studied halophytic grassland communities of the central Balkans. In addition, the differences in pastoral value were monitored along the geographical gradient, i.e., between grasslands situated in the Pannonian plain (grasslands of Alliance Puccinellion limosae) and those distributed on the south Serbia (Alliance Festucion pseudovinae). The study was carried out at 18 representative sites, focusing on the saline grasslands of the two distinct regions – on the north and on the south of Serbia. The obtained results show that the halophytic grasslands have satisfying quality characteristics (average values: dry matter - 93.67%, crude protein - 8.66%, cellulose - 30.36%, crude fat - 2.27%) compared with other studied grasslands of saline habitats. There were no significant differences in quality and chemical composition of grasslands of the two regions, despite differences in floristic composition, indicating that salinity is the key determinant for pastoral value of the halophytic vegetation. The certain variations were attributed to the specific floristic composition related to ecological conditions and halophytic community characteristics.


Metrics Loading ...


Abd El-Hack ME, Samak DH, Noreldin AE, Arif M, Yaqoob HS, Swelum AA (2018). Towards saving freshwater: halophytes as unconventional feedstuffs in livestock feed: a review. Environmental Science and Pollution Research International 25(15):14397-14406. Https://

Abou El Nasr HM, Kandil HM, El-Kerdawy DA, Khamis HS, El Shaer HM (1996). Value of processed saltbush and acacia shrubs as sheep fodder under arid conditions of Egypt. Small Ruminant Research 24:15-20.

Ahmadi A, Gomarian M, Sanjari M (2013). Variations in forage quality of two halophyte species, Camphorosma monspeliaca and Limonium iranicum at three phenological stages. Journal of Rangeland Science 3(3):245-251.

Aronson J (1985). HALOPH: A Database of Salt Tolerant Plants of the World. Arizona, Tucson, AZ: Office of Arid Land Studies, University pp 77.

Arzani H, Ahmadi Z, Azarnivand H, Bihamta MR (2010). Forage quality of three life forms of rangeland species in semi-arid and semi-humid regions in different phenological stages. Desert 15(2):71-74.

Asaadi AM, Daadkhah AR (2010). The study of forage quality of Haloxylon aphyllum and Eurotia ceratoides in different phenological stages. Research Journal of Biological Sciences 5(7):470-475.

Atasoglu C, Sahin S, Canbolat O, Baytekin H (2010). The effect of harvest stage on the potential nutritive value of kermes oak (Quercus coccifera) leaves. Livestock Research for Rural Development 22(2):182-185.

Attia-Ismail SA (2015). Nutritional and feed value of halophytes and salt tolerant plants. In: El Shaer HM, Squires VR (Eds). Halophytic and Salt Tolerant Feedstuffs: Impacts on Nutrition, Physiology and Reproduction of Livestock. Taylor and Francis pp 21.

Attia-Ismail SA (2018). Halophytes as forages. In: Edvan LR, Bezerra R (Eds). New Perspectives in Forage Crops. Intechopen pp 69-87.

Attia-Ismail SA, Elsayed HM, Askar AR, Zaki EA (2009). Effect of different bufferson rumen kinetics of sheep fed halophyte plants. Journal of Environmental Sciences 19(1):89-106.

Badri M, Ludidi N (2020). Halophytes as a Resource for Livestock in Africa: Present Status and Prospects. In: Grigore MN (Ed). Handbook of Halophytes. Springer, Cham pp 1-17.

Bauman DE, Perfield JW, De Veth MJ, Lock AL (2003). New perspectives on lipid digestion and metabolism in ruminants. In: Proceedings of Cornell Nutrition Conference. NY, USA: Cornell University 65:175-189.

Ben Salem H, Nefzaoui A, Abdouli H (1994). Palatability of shrubs and fodder trees measured on sheep and camels, Methodological approach and preliminary results. In: Papanastasis V, Stringi L (Eds). Fodder Trees and Shrubs (Cahiers Options Méditerranéennes) Zaragoza: CIHEAM pp 35-48.

Borhidi A, Kevey B, Lendvai G (2012). Plant communities of Hungary. Akadémiai Kiadó, Budapest.

Braun-Blanquet J (1964). Pflanzensoziologie [Plantsociology]. Springer, Wien.

Bremner JM (1965). Organic forms of nitrogen. In: Bleck CA et al. (Eds). Methods of Soil Analysis. ASA, Madison, pp 1148-1178.

Bruinenberg MH (2003). Forages from intensively man- aged and semi-natural grasslands in the diet of dairy cows. PhD Thesis, Wageningen University, Wageningen.

Catling PM, McElroy AR, Spicer KW (1994). Potential forage value of some eastern Canadian sedges (Cyperaceae: Carex). Rangeland Ecology & Management/Journal of Range Management Archives 47(3):226-230.

Centofanti T, Banuelos G (2019). Practical uses of halophytic plants as sources of food and fodder. In: Hasanuzzaman M, Shabala S, Fujita M (Eds). Halophytes and Climate Change: Adaptive Mechanisms and Potential Uses. CABI: Wallingford, UK pp 324-342.

Coleman SW, Henry DA (2002). Nutritive value of herbage. In: Freer M, Dove H (Eds). Sheep Nutrition. CSIRO Publishing: Collingwood UK pp 1-26.

Cook CW (1972). Comparative nutritive values of forbs, grasses and shrubs. In: McKell, Blaisedl, Goodin (Eds). Wildland shrubs—their biology and utilization. USDA Forest Service, General Technical Report INT-1, Ogden UT pp 303-310.

Dajić Stevanović Z, Aćić S, Luković M, Zlatković I, Vasin J, Topisirović G, Šilc U (2016). Classification of continental halophytic grassland vegetation of Southeastern Europe. Phytocoenologia 6646(3):317-331.

Dajić Stevanović Z, Petrović M, Šilc U, Aćić S (2012). Database of halophytic vegetation in Serbia. Biodiversity and Ecology 4:417-417.

Dajic-Stevanovic Z, Pecinar I, Kresovic M, Vrbnicanin S, Tomovic L (2008). Biodiversity, utilization and management of grasslands of salt affected soils in Serbia. Community Ecology 9:107-114.

Dítětová Z, Dítě D, Eliáš P, Galvánek D (2016). The impact of grazing absence in inland saline vegetation – a case study from Slovakia. Biologia 71(9):980-988.

Du Toit CJL, Van Niekerk WA, Rethman NFG, Coertze RJ (2004). The effect of type and level of carbohydrate supplementation on intake and digestibility of Atriplex nummularia cv. De Kock. South African Journal of Animal Science 34(5):35.

Dudal R, Purnell MF (1986). Land resources: Salt affected soils. Reclamation and Revegetation Research 5:19.

El Shaer HM, Attia-Ismail SA (2015). Halophytic and salt tolerant feedstuffs in the Mediterranean basin and Arab region: an overview. In: El Shaer HM, Squires VR (Eds). Halophytic and salt-tolerant feedstuffs impact on nutrition, physiology and reproduction of livestock. Boca Raton: CRC Press Taylor & Francis Group pp 21-36.

El Shaer MH, Attia-Ismail SA (2002). Halophytes as animal feeds: Potentiality, constraints, and prospects. Proceedings of the International Symposium on Optimum Utilization in Salt Affected Ecosystems in Arid and Semi-arid Regions pp 411-418.

Eliáš P, Sopotlieva D, Dítě D, Hájková P, Apostolova I, Senko D, Melečková Z, Hájek M (2013). Vegetation diversity of salt‐rich grasslands in Southeast Europe. Applied Vegetation Science 16:521-537.

Flowers TJ, Colmer TD (2008). Salinity tolerance in halophytes. New Phytologist 179:945-963.

Grigore MN, Ivanescu L, Toma C (2014). Halophytes and their habitats: ginding a place within plant ecological classes. In: Grigore MN, Ivanescu L, Toma C (Eds). Halophytes: An Integrative Anatomical Study Springer Cham pp 27-31.

Hamed BK, Custódio L (2019). How could halophytes provide a sustainable alternative to achieve food security in marginal lands? In: Hasanuzzaman M, Nahar K, Öztürk M (Eds). Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer Singapore pp 259-270.

Henneberg W, Stohmann J (1859). Über das Erhaltungsfutter volljährigen Rindviehes [On the maintenance feeding of one-year Old Cattle]. Journal für Landwirtschaft 3:485-551.

Hennekens S, Schaminée J (2001). TURBOVEG, a comprehensive data base management system for vegetation data. Journal of Vegetation Science 12:589-591.

Hessini K, Jeddi K, El Shaer HM, Smaoui A, Salem HB, Siddique KH (2020). Potential of herbaceous vegetation as animal feed in semi-arid Mediterranean saline environ-ments: The case for Tunisia. Agronomy Journal 112:2445.

Kazemi K, Eskandari H (2011). Effects of salt stress on germination and early seedling growth of rice (Oryza sativa) cultivars in Iran. African Journal of Biotechnology 10(77):17789-17792.

Koutsoukis C, Akrida-Demertzi K, Demertzis PG, Roukos C, Voidarou C, Kandrelis S (2016). The variation of crude protein and total fat of the main grassland plants, in various s tages of growth, in “Kos tilata” subalpine grassland in Theodoriana, Arta, Greece. Greece Ekin Journal 2(2):69-75.

Krysl LJ, Hubbert ME, Sowell BF, Plumb GE, Jewett TK, Smith MA (1984). Horses and cattle grazing in the Wyoming Red Desert I, food habits, and dietary overlap. Journal of Range Management 37:72-76.

Lalman D (2017). Nutritive value of feeds for beef cattle. Fact sheet ANSI-3018. Stillwater, OK: Oklahoma State University Cooperative Extension Service.

Landucci F, Tichý L, Šumberová K, Chytrý M (2015). Formalized classification of species-poor vegetation: a proposal of a consistent protocol for aquatic vegetation. Journal of Vegetation Science 26:791-803.

Liamadis LG (2000). Physiology of the nutritional deficiencies of an animal body. University Studio Press Publications, Thessaloniki.

Lukovic M (2019). Vegetacija zaslanjenih staništa Srbije sa procenom održivog korišćenja i očuvanja [Vegetation of saline habitats of Serbia with an assessment of the sustainable use and conservation]. PhD Thesis, University of Belgrade, Belgrade.

Luković M, Aćić S, Šoštarić I, Pećinar I, Dajić Stevanović Z (2020). Management and Ecosystem Services of Halophytic Vegetation. In: Grigore MN (Eds). Handbook of Halophytes. Springer, Cham.

Marinoni LDR, Zabala JM, Taleisnik EL, Schrauf GE, Richard GA, Tomas PA, … Pensiero JF (2019). Wild halophytic species as forage sources: Key aspects for plant breeding. Grass and Forage Science 1-24.

Marsalis MA, Hagevoort GR, Lauriault LM (2009). Hay quality, sampling, and testing. Circular 641.

Masters DG (2015). Assessing the feeding value of halophytes. In: El Shaer HM, Squires VR (Eds). Halophytic and Salt Tolerant Feedstuffs: Impacts on Nutrition, Physiology and Reproduction of Livestock. CRC Press New York pp 89-105.

Medila I, Adamou A, Arhab R, Hessini K (2015). Nutritional specificities of some halophytes, eaten by camel, native from Algerians salt ecosystems. Livestock Research for Rural Development 27:48.

Meyer MW, Brown RD (1985). Seasonal trends in the chemical composition of ten range plants in south Texas. Journal of Range Management 38:154-157.

Minson DJ (1990). Forage in Ruminant Nutrition. Academic Press, New York, pp 483.

Molnár Z, Borhidi A (2003). Hungarian alkali vegetation: Origins, landscape history, syntaxonomy, conservation. Phytocoenologia 33:377-408.

Moujahed N, Guesmi H, Hessini K (2015). Potential use of halophytes and salt tolerant plants in ruminant feeding: Tunisian case study. In: El Shaer HM Squires VR (Eds.). Halophytic and Salt Tolerant Feed stuffs: Impacts on Nutrition, Physiology and Reproduction of Livestock. CRC Press; New York pp 37-59.

Mountousis I, Papanikolaou K, Stanogias G, Chatzitheodoridis F, Roukos C (2008). Seasonal variation of chemical composition and dry matter digestibility of rangelands in NW Greece. Journal of Central European Agriculture 9(3):547-556.

Mucina L, Bültmann H, Dierßen K, Theurillat JP, Raus T, Čarni A, … Tichý L (2016). Vegetation of Europe: Hierarchical floristic classification system of plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19:3-264.

Munir N, Abideen Z, Sharif N (2020). Development of halophytes as energy feedstock by applying genetic manipulations. All Life 13(1):1-10.

Nasrullah N, Niimi M, Akashi R, Kawamura O (2003). Nutritive evaluation of forage plants grown in South Sulawesi, Indonesia. Asian-Australasian Journal of Animal Sciences. 16(5):693-701.

Oktay G, Temel S (2015). Determination of annual fodder value of Ebu Cehil (Calligonum polygonoides L. ssp. comosum (L’Hér.)) shrub. Journal of Agricultural Faculty of Gaziosmanpasa University 32(1):30-36.

Osman AE, Bahhady F, Hassan N, Ghassali B, Ibrahim TA (2006). Livestock production and economic implications from augmenting degraded rangeland with Atriplex halimus and Salsola vermiculata in northwest Syria. Journal of Arid Environments 65(3):474-490.

Rad MS, Rad JS, da Silva JAT, Mohsenzadeh S (2013). Forage quality of two halophytic species, Aeluropus lagopoides and Aeluropus littoralis, in two phenological stages. International Journal of Agronomy and Plant Production 4:998-1005.

Ruyle G (1993). Nutritional value of range forage for lives tock. In: Gum R, Ruyle G, Rice R (Eds). Arizona Ranchers' Management Guide. Arizona Cooperative Extension. The University of Arizona pp 4.

Statistics IS (2019). IBM Corp. Released 2019. IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp.

Stevanović ZD, Aćić S, Stešević D, Luković, M, Šilc U (2019). Halophytic vegetation in south-east Europe: classification, conservation and ecogeographical patterns. In: Hasanuzzaman M, Shabala S, Fujita M (Eds). Halophytes and climate Change: Adaptive Mechanisms and Potential Uses pp 55.

Tawfik MM, Haggag WM, Mirvat EG, Kabish MO, El Habbasha SF (2015). Determination of nutritional value and lignocellulosic biomass of six halophytic plants grown under saline irrigation in South Sinai. International Journal of ChemTech Research 8(9):37-42.

Temel S, Surmen M, Tan M (2015). Effects of growth stages on the nutritive value of specific halophyte species in saline grasslands. The Journal of Animal & Plant Sciences 25(5):1419-1428.

Ter Braak CJ, Smilauer P (2002). CANOCO reference manual and CanoDraw for Windows user's guide. Software for canonical community ordination (version 4.5),

Tichý L (2002). JUICE, software for vegetation classification. Journal of Vegetation Science 13:451-453.

Tomić Z, Bijelić Z, Krnjaja V (2009). Analysis of grassland associations of Stara Planina Mountain. Biotechnology in Animal Husbandry 25(5-6-1):451-464.

Török P, Valkó O, Deák B, Kelemen A, Tóthmérész B (2014). Traditional cattle grazing in a mosaic alkali landscape: Effects on grassland biodiversity along a moisture gradient. PLoS One 9(5):e97095.

Török P, Vida E, Deák B, Lengyel S, Tóthmérész B (2011). Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodiversity and Conservation 20(11):2311-2332.

Tóth E, Deák B, Valkó O, Kelemen A, Miglécz T, Tóthmérész B, Török P (2018). Livestock type is more crucial than grazing intensity: Traditional cattle and sheep grazing in short‐grass steppes. Land Degradation & Development 29:231-239.

Tuncturk M, Eryigit T, Sekeroglu N, Ozgokce F (2015). Determination of nutritional value and mineral composition of some wild Scorzonera species. American Journal of Essential Oils and Natural Products 3(2):22-25.

Valkó O, Tóthmérész B, Kelemen A, Simon E, Miglécz T, Lukács BA, Török P (2014). Environmental factors driving seed bank diversity in alkali grasslands. Agriculture, Ecosystems and Environment 182:80-87.

Van Niekerk WA, Sparks CF, Rethman NFG, Coertze RJ (2004). Qualitative characteristics of some Atriplex species and Cassia sturtii at two sites in South Africa. South African Journal of Animal Science 34(5):108.

Van Soest P J, Sniffen CI (1984). Nitrogen fractions in NDF and ADP. In Proc. Dist. Feed Conf. pp 39:73.

Villanueva-Avalos JF (2008). Effect of defoliation patterns and developmental morphology on forage productivity and carbohydrate reserves in WW-B. Dahl Grass [Bothriochloa bladhii (Retz) ST Blake]. PhD Thesis, Texas Tech University.

Zlatković I, Zlatković B, Ranđelović V, Jenačković D, Amidžić L (2014). Taxonomical, phytogeographical and ecological analysis of the salt marsh flora of Central and Southern Serbia. Biologica Nyssana 5(2):91-102.



How to Cite

LUKOVIĆ, M., ŠILC, U., VASIN, J., RADOVIĆ, J., TOPISIROVIĆ, G., KOSTIĆ, M., & DAJIĆ STEVANOVIĆ, Z. (2022). Assessment of quality and chemical composition of continental halophytic grasslands in south-east Europe. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12694.



Research Articles
DOI: 10.15835/nbha50112694

Most read articles by the same author(s)