CRISPR/Cas9 applications for improvement of soybeans, current scenarios, and future perspectives

Authors

  • Guan JIANING Rice Research Institute, Shenyang Agricultural University, Shenyang (CN)
  • Xie ZHIMING College of Life Sciences, Baicheng Normal University, Baicheng, Jilin (CN)
  • Adnan RASHEED Jilin Changfa Modern Agricultural Science and Technology Group Co., Ltd. (CN)
  • Wang TIANCONG Jilin Agricultural University, College of Agronomy, Changchun, Jilin (CN)
  • Zhao QIAN Changchun Normal University, College of Life Sciences (CN)
  • Zhang ZHUO Jilin Agricultural University, College of Agronomy, Changchun, Jilin (CN)
  • Zhao ZHUO Jilin Normal University, College of Life Sciences (CN)
  • John J. GARDINER Jilin Changfa Modern Agricultural Science and Technology Group Co., Ltd. (CN)
  • Ishtiaq AHMAD Agronomic Research Institute Faisalabad (PK)
  • Wang XIAOXUE Rice Research Institute, Shenyang Agricultural University, Shenyang (CN)
  • Wei JIAN Jilin Changfa Modern Agricultural Science and Technology Group Co., Ltd.; Changchun Normal University, College of Life Sciences (CN)
  • Gai YUHONG Jilin Agricultural University, College of Agronomy,Changchun, Jilin (CN)

DOI:

https://doi.org/10.15835/nbha50212678

Keywords:

biotic and abiotic stresses, Cas9, CRISPR, soybean, yield, quality

Abstract

The soybean is one of the most widely grown legume crops which serves as a source of protein and oil. Soybean production has increased in recent years due to several breeding techniques. The use of conventional breeding approaches does not fulfil the rapidly growing demand of the world population.  Newly developed genomic approaches opened the windows of opportunities to bring more genetic variation in soybean germplasm. Clustered regularly interspaced short palindromic repeats (CRISPR) has emerged as a renowned gene-editing tool that has broadened soybean research. CRISPR/Cas9 has been extensively applied to improve several essential traits in soybeans. Soybean yield, quality, and other agronomic traits have been enhanced, and research is being conducted to revolutionize the genomic area of soybeans. The development of specific soybean mutants has shown better yield and quality. In this review, we have enlisted the potential use of clustered regularly interspaced short palindromic repeats (CRISPR) in soybean improvement and highlighted the significant future prospective. Research of applied sciences revealed that CRISPR/Cas9 could improve the traits of the commercially essential soybean crop, including yield, quality, and resistance to certain biotic and abiotic factors. The use of this tool has lifted the scope of genome editing and laid a foundation for the bright future of human beings. This updated review will be helpful for future research studies focusing on the successful use of CRISPR/Cas9 in soybeans.

Metrics

Metrics Loading ...

References

Adli M (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications 9:1-13. https://doi.org/10.1038/s41467-018-04252-2 DOI: https://doi.org/10.1038/s41467-018-04252-2

Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, … Mubarik MS (2021). An outlook on global regulatory landscape for genome-edited crops. International Journal of Molecular Sciences 22:11753. https://doi.org/10.3390/ijms222111753 DOI: https://doi.org/10.3390/ijms222111753

Ahmar S, Gill RA, Jung K-H, Faheem A, Qasim MU, Mubeen M, Zhou W (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International Journal of Molecular Sciences 21:2590. https://doi.org/10.3390/ijms21072590 DOI: https://doi.org/10.3390/ijms21072590

Al Amin N, Ahmad N, Wu N, Pu X, Ma T, Du Y, … Wang P (2019). CRISPR-Cas9 mediated targeted disruption of FAD2–2 microsomal omega-6 desaturase in soybean (Glycine max. L). BMC Biotechnology 19:1-10. DOI: https://doi.org/10.1186/s12896-019-0501-2

Almeida-Silva F, Venancio TM (2022). Pathogenesis-related protein 1 (PR-1) genes in soybean: Genome-wide identification, structural analysis and expression profiling under multiple biotic and abiotic stresses. Gene 809:146013. https://doi.org/10.1016/j.gene.2021.146013 DOI: https://doi.org/10.1016/j.gene.2021.146013

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, … Raguram A (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149-157. https://doi.org/10.1038/s41586-019-1711-4 DOI: https://doi.org/10.1038/s41586-019-1711-4

Arujanan M, Teng PP (2018). Legal, regulatory and labelling status of biotech crops. In: Advances in Botanical Research. Elsevier, Vol 86, pp 45-88. DOI: https://doi.org/10.1016/bs.abr.2017.11.019

Bae S, Park J, Kim J-S (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473-1475. https://doi.org/10.1093/bioinformatics/btu048 DOI: https://doi.org/10.1093/bioinformatics/btu048

Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z, Liu B, Sun J, Yang M, Yang L (2020). Generation of a multiplex mutagenesis population via pooled CRISPR‐Cas9 in soya bean. Plant Biotechnology Journal 18:721-731. https://doi.org/10.1111/pbi.13239 DOI: https://doi.org/10.1111/pbi.13239

Bao A, Burritt DJ, Chen H, Zhou X, Cao D, Tran L-SP (2019a). The CRISPR/Cas9 system and its applications in crop genome editing. Critical Reviews in Biotechnology 39:321-336. https://doi.org/10.1080/07388551.2018.1554621 DOI: https://doi.org/10.1080/07388551.2018.1554621

Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S (2019b). CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biology 19:1-12. DOI: https://doi.org/10.1186/s12870-019-1746-6

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, … Horvath P (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709-12. https://doi.org/10.1126/science.1138140 DOI: https://doi.org/10.1126/science.1138140

Bhowmik P, Konkin D, Polowick P, Hodgins CL, Subedi M, Xiang D, … Babic V (2021). CRISPR/Cas9 gene editing in legume crops: Opportunities and challenges. Legume Science 3:e96. DOI: https://doi.org/10.1002/leg3.96

Butzen S, Schnebly S (2007). CAR. Crop Insights 17:3.

Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015). CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10:e0136064. https://doi.org/10.1371/journal.pone.0136064 DOI: https://doi.org/10.1371/journal.pone.0136064

Cai Y, Chen L, Sun S, Wu C, Yao W, Jiang B, Han T, Hou W (2018). CRISPR/Cas9-mediated deletion of large genomic fragments in soybean. International Journal of Molecular Sciences 19:3835. https://doi.org/10.3390/ijms19123835 DOI: https://doi.org/10.3390/ijms19123835

Cai Y, Chen L, Zhang Y, Yuan S, Su Q, Sun S, Wu C, Yao W, Han T, Hou W (2020). Target base editing in soybean using a modified CRISPR/Cas9 system. Plant Biotechnology Journal 18:1996-1998. https://doi.org/10.1111/pbi.13386 DOI: https://doi.org/10.1111/pbi.13386

Cai Z, Xian P, Cheng Y, Ma Q, Lian T, Nian H, Ge L (2021). CRISPR/Cas9‐mediated gene editing of GmJAGGED1 increased yield in the low‐latitude soybean variety Huachun 6. Plant Biotechnology Journal 19:1898. https://doi.org/10.1111/pbi.13673 DOI: https://doi.org/10.1111/pbi.13673

Callaway E (2018). CRISPR plants now subject to tough GM laws in European Union. Nature 560:16-17. https://doi.org/10.1038/d41586-018-05814-6 DOI: https://doi.org/10.1038/d41586-018-05814-6

Carlson DF, Fahrenkrug SC, Hackett PB (2012). Targeting DNA with fingers and TALENs. Molecular Therapy-Nucleic Acids 1. https://doi.org/10.1038/mtna.2011.5 DOI: https://doi.org/10.1038/mtna.2011.5

Carrijo J, Illa-Berenguer E, LaFayette P, Torres N, Aragão FJ, Parrott W, Vianna GR (2021). Two efficient CRISPR/Cas9 systems for gene editing in soybean. Transgenic Research 30:239-249. https://doi.org/10.1007/s11248-021-00246-x DOI: https://doi.org/10.1007/s11248-021-00246-x

Carroll D, Morton JJ, Beumer KJ, Segal DJ (2006). Design, construction and in vitro testing of zinc finger nucleases. Nature Protocols 1:1329-1341. https://doi.org/10.1038/nprot.2006.231 DOI: https://doi.org/10.1038/nprot.2006.231

Chen F, Yang Y, Luo X, Zhou W, Dai Y, Zheng C, Liu W, Yang W, Shu K (2019a). Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress. BMC Plant Biology 19:1-13. https://doi.org/10.1186/s12870-019-1861-4 DOI: https://doi.org/10.1186/s12870-019-1861-4

Chen K, Wang Y, Zhang R, Zhang H, Gao CJAropb (2019b). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70:667-697. https://doi.org/10.1146/annurev-arplant-050718-100049 DOI: https://doi.org/10.1146/annurev-arplant-050718-100049

Chen L, Cai Y, Hou W (2021a). Generation of knockout and fragment deletion mutants in soybean by CRISPR-Cas9. In: CRISPR-Cas Methods. Springer, pp 123-135. DOI: https://doi.org/10.1007/978-1-0716-1657-4_9

Chen X, Yang S, Zhang Y, Zhu X, Yang X, Zhang C, Li H, Feng X (2021b). Generation of male-sterile soybean lines with the CRISPR/Cas9 system. The Crop Journal 9:1270-1277. https://doi.org/10.1016/j.cj.2021.05.003 DOI: https://doi.org/10.1016/j.cj.2021.05.003

Cheng Q, Dong L, Su T, Li T, Gan Z, Nan H, Lu S, Fang C, Kong L, Li H (2019). CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biology 19:1-11. https://doi.org/10.1186/s12870-019-2145-8 DOI: https://doi.org/10.1186/s12870-019-2145-8

Cheng Y, Wang X, Cao L, Ji J, Liu T, Duan K (2021). Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Methods 17:1-12. https://doi.org/10.1186/s13007-021-00778-7 DOI: https://doi.org/10.1186/s13007-021-00778-7

Chilcoat D, Liu Z-B, Sander J (2017). Use of CRISPR/Cas9 for crop improvement in maize and soybean. Progress in Molecular Biology and Translational Science 149:27-46. https://doi.org/10.1016/bs.pmbts.2017.04.005 DOI: https://doi.org/10.1016/bs.pmbts.2017.04.005

Curtin SJ, Xiong Y, Michno JM, Campbell BW, Stec AO, Čermák T, … Stupar RM (2018). Crispr/Cas9 and TALENS generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnology Journal 16:1125-1137. https://doi.org/10.1111/pbi.12857 DOI: https://doi.org/10.1111/pbi.12857

DeHaan LR, Van Tassel DL, Anderson JA, Asselin SR, Barnes R, Baute GJ, … Hulke BS (2016). A pipeline strategy for grain crop domestication. Crop Science 56:1-14. https://doi.org/10.2135/cropsci2015.06.0356 DOI: https://doi.org/10.2135/cropsci2015.06.0356

Do PT, Nguyen CX, Bui HT, Tran LT, Stacey G, Gillman JD, Zhang ZJ, Stacey MG (2019). Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biology 19:1-14. https://doi.org/10.1186/s12870-019-1906-8 DOI: https://doi.org/10.1186/s12870-019-1906-8

Dong J, Hudson ME (2022). WI12 Rhg1 interacts with DELLAs and mediates soybean cyst nematode resistance through hormone pathways. Plant Biotechnology Journal 20:283-296. https://doi.org/10.1111/pbi.13709 DOI: https://doi.org/10.1111/pbi.13709

Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology 217:90-97. https://doi.org/10.1016/j.jbiotec.2015.11.005 DOI: https://doi.org/10.1016/j.jbiotec.2015.11.005

Duan K, Cheng Y, Ji J, Wang C, Wei Y, Wang Y (2021). Large chromosomal segment deletions by CRISPR/LbCpf1‐mediated multiplex gene editing in soybean. Journal of Integrative Plant Biology 63:1620-1631. https://doi.org/10.1111/jipb.13158 DOI: https://doi.org/10.1111/jipb.13158

Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005). Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Research 33:5978-5990. https://doi.org/10.1093/nar/gki912 DOI: https://doi.org/10.1093/nar/gki912

Eid A, Alshareef S, Mahfouz MM (2018). CRISPR base editors: genome editing without double-stranded breaks. Biochemical Journal 475:1955-1964. https://doi.org/10.1042/BCJ20170793 DOI: https://doi.org/10.1042/BCJ20170793

Entine J, Felipe MSS, Groenewald J-H, Kershen DL, Lema M, McHughen A, … Parrott WA (2021). Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. Transgenic Research 30:551-584. https://doi.org/10.1007/s11248-021-00257-8 DOI: https://doi.org/10.1007/s11248-021-00257-8

Gaj T, Gersbach CA, Barbas III CF (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31:397-405. https://doi.org/10.1016/j.tibtech.2013.04.004 DOI: https://doi.org/10.1016/j.tibtech.2013.04.004

Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF (2012). Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nature Methods 9:805-807. https://doi.org/10.1038/nmeth.2030 DOI: https://doi.org/10.1038/nmeth.2030

Gale F, Valdes C, Ash M (2019). Interdependence of China, United States, and Brazil in soybean trade. New York: US Department of Agriculture’s Economic Research Service Report, pp 1-48.

Gao C (2018). The future of CRISPR technologies in agriculture. Nature Reviews Molecular Cell Biology 19:275-276. https://doi.org/10.1038/nrm.2018.2 DOI: https://doi.org/10.1038/nrm.2018.2

Gao C (2021). Genome engineering for crop improvement and future agriculture. Cell 184:1621-1635. https://doi.org/10.1016/j.cell.2021.01.005 DOI: https://doi.org/10.1016/j.cell.2021.01.005

Gizlice Z, Carter Jr TE, Gerig T, Burton J (1996). Genetic diversity patterns in North American public soybean cultivars based on coefficient of parentage. Crop Science 36:753-765. https://doi.org/10.2135/cropsci1996.0011183X003600030038x DOI: https://doi.org/10.2135/cropsci1996.0011183X003600030038x

Han J, Guo B, Guo Y, Zhang B, Wang X, Qiu L-J (2019). Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology. Frontiers in Plant Science 10:1446. https://doi.org/10.3389/fpls.2019.01446 DOI: https://doi.org/10.3389/fpls.2019.01446

Hart C (2017). The economic evolution of the soybean industry. In: The Soybean Genome. Springer, pp 1-9. DOI: https://doi.org/10.1007/978-3-319-64198-0_1

Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, … Cedrone F (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal 12:934-940. https://doi.org/10.1111/pbi.12201 DOI: https://doi.org/10.1111/pbi.12201

Hsu PD, Lander ES, Zhang F (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262-1278. https://doi.org/10.1016/j.cell.2014.05.010 DOI: https://doi.org/10.1016/j.cell.2014.05.010

Hu C, Wong W-T, Wu R, Lai W-F (2020). Biochemistry and use of soybean isoflavones in functional food development. Critical Reviews in Food Science Nutrition 60:2098-2112. https://doi.org/10.1080/10408398.2019.1630598 DOI: https://doi.org/10.1080/10408398.2019.1630598

Hua K, Zhang J, Botella JR, Ma C, Kong F, Liu B, Zhu J-K (2019). Perspectives on the application of genome-editing technologies in crop breeding. Molecular Plant 12:1047-1059. https://doi.org/10.1016/j.molp.2019.06.009 DOI: https://doi.org/10.1016/j.molp.2019.06.009

Huynh N, Depner N, Larson R, King-Jones K (2020). A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila. Genome Biology 21:1-29. https://doi.org/10.1186/s13059-020-02193-y DOI: https://doi.org/10.1186/s13059-020-02193-y

Hyten DL, Song Q, Zhu Y, Choi I-Y, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006). Impacts of genetic bottlenecks on soybean genome diversity. Proceedings of the National Academy of Sciences 103:16666-16671. https://doi.org/10.1073/pnas.0604379103 DOI: https://doi.org/10.1073/pnas.0604379103

Ishino Y, Krupovic M, Forterre P (2018). History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. Journal of Bacteriology 200:e00580-17. https://doi.org/10.1128/JB.00580-17 DOI: https://doi.org/10.1128/JB.00580-17

Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018). CRISPR for crop improvement: an update review. Frontiers in Plant Science 9:985. https://doi.org/10.3389/fpls.2018.00985 DOI: https://doi.org/10.3389/fpls.2018.00985

Jiang B, Chen L, Yang C, Wu T, Yuan S, Wu C, Zhang M, Gai J, Han T, Hou W (2021). The cloning and CRISPR/Cas9‐mediated mutagenesis of a male sterility gene MS1 of soybean. Plant Biotechnology Journal 19:1098. https://doi.org/10.1111/pbi.13601 DOI: https://doi.org/10.1111/pbi.13601

Jiang F, Doudna JA (2017). CRISPR–Cas9 structures and mechanisms. Annual Review of Biophysics 46:505-529. https://doi.org/10.1146/annurev-biophys-062215-010822 DOI: https://doi.org/10.1146/annurev-biophys-062215-010822

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. https://doi.org/10.1126/science.1225829 DOI: https://doi.org/10.1126/science.1225829

Kanazashi Y, Hirose A, Takahashi I, Mikami M, Endo M, Hirose S, … Ishimoto M (2018). Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant Cell Reports 37:553-563. https://doi.org/10.1007/s00299-018-2251-3 DOI: https://doi.org/10.1007/s00299-018-2251-3

Kang J (2016). Application of CRISPR/Cas9-mediated genome editing for studying soybean resistance to soybean cyst nematode, University of Missouri-Columbia.

Ke D, He Y, Fan L, Niu R, Cheng L, Wang L, Zhang Z (2022). The soybean TGA transcription factor GmTGA13 plays important roles in the response to salinity stress. Plant Biology 24:313-322. https://doi.org/10.1111/plb.13360 DOI: https://doi.org/10.1111/plb.13360

Kim H, Choi J (2021). A robust and practical CRISPR/crRNA screening system for soybean cultivar editing using LbCpf1 ribonucleoproteins. Plant Cell Reports 40:1059-1070. https://doi.org/10.1007/s00299-020-02597-x DOI: https://doi.org/10.1007/s00299-020-02597-x

Kim H, Kim S-T, Ryu J, Kang B-C, Kim J-S, Kim S-G (2017). CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature Communications 8:1-7. https://doi.org/doi.org/10.1038/ncomms14406 DOI: https://doi.org/10.1038/ncomms14406

Kim MY, Van K, Kang YJ, Kim KH, Lee S-H (2012). Tracing soybean domestication history: From nucleotide to genome. Breeding Science 61:445-452. https://doi.org/10.1270/jsbbs.61.445 DOI: https://doi.org/10.1270/jsbbs.61.445

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420-424. https://doi.org/10.1038/nature17946 DOI: https://doi.org/10.1038/nature17946

Kong F, Nan H, Cao D, Li Y, Wu F, Wang J, Lu S, Yuan X, Cober ER, Abe J (2014). A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Science 54:2529-2535. https://doi.org/10.2135/cropsci2014.03.0228 DOI: https://doi.org/10.2135/cropsci2014.03.0228

Lander ES (2016). The heroes of CRISPR. Cell 164:18-28. https://doi.org/10.1016/j.cell.2015.12.041 DOI: https://doi.org/10.1016/j.cell.2015.12.041

Li C, Li Y-h, Li Y, Lu H, Hong H, Tian Y, Li H, Zhao T, Zhou X, Liu J (2020a). A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Molecular Plant 13:745-759. https://doi.org/10.1016/j.molp.2020.01.014 DOI: https://doi.org/10.1016/j.molp.2020.01.014

Li C, Nguyen V, Liu J, Fu W, Chen C, Yu K, Cui Y (2019). Mutagenesis of seed storage protein genes in soybean using CRISPR/Cas9. BMC Research Notes 12:1-7. https://doi.org/10.1186/s13104-019-4207-2 DOI: https://doi.org/10.1186/s13104-019-4207-2

Li J, Zhang Y, Ma R, Huang W, Hou J, Fang C, Wang L, Yuan Z, Sun Q, Dong X (2022). Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. Plant Biotechnology Journal. https://doi.org/10.1111/pbi.13791 DOI: https://doi.org/10.1111/pbi.13791

Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C (2018). Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology 36:1160-1163. https://doi.org/10.1038/nbt.4273 DOI: https://doi.org/10.1038/nbt.4273

Li Y, Hallerman EM, Wu K, Peng Y (2020b). Insect-resistant genetically engineered crops in China: development, application, and prospects for use. Annual Review of Entomology 65:273-292. https://doi.org/10.1146/annurev-ento-011019-025039 DOI: https://doi.org/10.1146/annurev-ento-011019-025039

Li Z, Cheng Q, Gan Z, Hou Z, Zhang Y, Li Y, … Chen L (2021). Multiplex CRISPR/Cas9-mediated knockout of soybean LNK2 advances flowering time. The Crop Journal 9:767-776. https://doi.org/10.1016/j.cj.2020.09.005 DOI: https://doi.org/10.1016/j.cj.2020.09.005

Li Z, Liu Z-B, Xing A, Moon BP, Koellhoffer JP, Huang L, … Cigan AM (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiology 169:960-970. https://doi.org/10.1104/pp.15.00783 DOI: https://doi.org/10.1104/pp.15.00783

Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W (2019). Methodologies for improving HDR efficiency. Frontiers in Genetics 9:691. https://doi.org/10.3389/fgene.2018.00691 DOI: https://doi.org/10.3389/fgene.2018.00691

Lu QSM, Tian L (2022). An efficient and specific CRISPR-Cas9 genome editing system targeting soybean phytoene desaturase genes. BMC Biotechnology 22:1-16. https://doi.org/10.1186/s12896-022-00737-7 DOI: https://doi.org/10.1186/s12896-022-00737-7

Ma J, Sun S, Whelan J, Shou H (2021). CRISPR/Cas9-Mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds. International Journal of Molecular Sciences 22:3877. https://doi.org/10.3390/ijms22083877 DOI: https://doi.org/10.3390/ijms22083877

Ma Y, Chen W, Zhang X, Yu L, Dong W, Pan S, Gao S, Huang X, Zhang L (2016). Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein. RNA biology 13:605-612. https://doi.org/10.1080/15476286.2016.1185591 DOI: https://doi.org/10.1080/15476286.2016.1185591

Makarova K, Grishin N, Shabalina S, Wolf Y, Koonin E (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct 1:7. https://doi.org/10.1186/1745-6150-1-7 DOI: https://doi.org/10.1186/1745-6150-1-7

Marathe A, Krishnan V, Mahajan MM, Thimmegowda V, Dahuja A, Jolly M, … Sachdev A (2018). Characterization and molecular modeling of Inositol 1, 3, 4 tris phosphate 5/6 kinase-2 from Glycine max (L) Merr.: comprehending its evolutionary conservancy at functional level. 3 Biotech 8:1-11. https://doi.org/10.1007/s13205-017-1076-z DOI: https://doi.org/10.1007/s13205-017-1076-z

Marraffini LA (2016). The CRISPR-Cas system of Streptococcus pyogenes: function and applications. Streptococcus pyogenes: Basic Biology to Clinical Manifestations.

Mishra R, Zhao K (2018). Genome editing technologies and their applications in crop improvement. Plant Biotechnology Reports 12:57-68. https://doi.org/10.1007/s11816-018-0472-0 DOI: https://doi.org/10.1007/s11816-018-0472-0

Namo FM, Belachew GT (2021). Genome editing technologies for crop improvement: Current status and future prospective. Plant Cell Biotechnology Molecular Biology 22:1-19.

Natarajan S, Luthria D, Bae H, Lakshman D, Mitra A (2013). Transgenic soybeans and soybean protein analysis: an overview. Journal of Agricultural Food Chemistry 61:11736-11743. https://doi.org/10.1021/jf402148e DOI: https://doi.org/10.1021/jf402148e

O'Connell MR (2019). Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR–Cas systems. Journal of Molecular Biology 431:66-87. https://doi.org/10.1016/j.jmb.2018.06.029 DOI: https://doi.org/10.1016/j.jmb.2018.06.029

O’Rourke JA, Graham MA, Whitham SA (2017). Soybean functional genomics: bridging the genotype-to-phenotype gap. In: The Soybean Genome. Springer, pp 151-170. DOI: https://doi.org/10.1007/978-3-319-64198-0_10

Poysa V, Woodrow L, Yu K (2006). Effect of soy protein subunit composition on tofu quality. Food Research International 39:309-317. https://doi.org/10.1016/j.foodres.2005.08.003 DOI: https://doi.org/10.1016/j.foodres.2005.08.003

Puchta H (2005). The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. Journal of Experimental Botany 56:1-14. https://doi.org/10.1093/jxb/eri025 DOI: https://doi.org/10.1093/jxb/eri025

Rasheed A, Fahad S, Hassan MU, Tahir MM, Aamer M, Wu, Ziming (2020a). A review on aluminum toxicity and quantitative trait loci maping in rice (Oryza sative L). Applied Ecology and Environmental Research 18:3951-3961. https://doi.org/10.15666/aeer/1803_39513964 DOI: https://doi.org/10.15666/aeer/1803_39513964

Rasheed A, Fahad S, Aamer M, Hassan MU, Tahir MM, Wu, Z (2020b). Role of genetic factors in regulating cadmium uptake, transport and accumulation mechanisms and quantitative trait loci mapping in rice. a review. Applied Ecology and Environmental Research 18:4005-4023. https://doi.org/10.15666/aeer/1803_40054023 DOI: https://doi.org/10.15666/aeer/1803_40054023

Rasheed A, Gill RA, Hassan MU, Mahmood A, Qari S, Zaman QU, Li H (2021a). A critical review: recent advancements in the use of CRISPR/Cas9 technology to enhance crops and alleviate global food crises. Current Issues in Molecular Biology 43:1950-1976. https://doi.org/10.3390/cimb43030135 DOI: https://doi.org/10.3390/cimb43030135

Rasheed A, Hassan M, Aamer M, Bian J, Xu Z, He X, Wu Z (2020). Iron toxicity, tolerance and quantitative trait loci mapping in rice: a review. Applied Ecology and Environmental Research 18:7483-7498. https://doi.org/10.15666/aeer/1806_74837498 DOI: https://doi.org/10.15666/aeer/1806_74837498

Rasheed A, Hassan MU, Fahad S, Aamer M, Batool M, Ilyas M, … Li H (2021b). Heavy metals stress and plants defense responses. In: Sustainable Soil and Land Management and Climate Change. CRC Press. pp 57-82.

Rasheed A, Wassan GM, Khanzada H, Solangi AM, Han R, Li H, Bian J, Wu Z (2021c). Identification of genomic regions at seedling related traits in response to aluminium toxicity using a new high-density genetic map in rice (Oryza sativa L.). Genetic Resources and Crop Evolution 68:1889-1903. https://doi.org/10.1007/s10722-020-01103-2 DOI: https://doi.org/10.1007/s10722-020-01103-2

Rees HA, Liu DR (2018). Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics 19:770-788. https://doi.org/10.1038/s41576-018-0059-1 DOI: https://doi.org/10.1038/s41576-018-0059-1

Saha A, Mandal S (2019). Nutritional benefit of soybean and its advancement in research. Sustainable Food Production 5:6-16. https://doi.org/10.18052/www.scipress.com/SFP.5.6 DOI: https://doi.org/10.18052/www.scipress.com/SFP.5.6

Scheben A, Edwards D (2018). Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biology 19:1-7. https://doi.org/10.1186/s13059-018-1555-5 DOI: https://doi.org/10.1186/s13059-018-1555-5

Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, … Cheng J (2010). Genome sequence of the palaeopolyploid soybean. Nature 463:178-183. https://doi.org/10.1038/nature08670 DOI: https://doi.org/10.1038/nature08670

Sharkey SM, Williams BJ, Parker KM (2021). Herbicide drift from genetically engineered herbicide-tolerant crops. Environmental Science Technology 55:15559-15568. https://doi.org/10.1021/acs.est.1c01906 DOI: https://doi.org/10.1021/acs.est.1c01906

Shiming L, Lakhssassi N, Zhou Z, Colantonio V, Kassem MA, Meksem K (2017). Soybean genomic libraries, TILLING, and genetic resources. In: The Soybean Genome. Springer. pp 131-149. DOI: https://doi.org/10.1007/978-3-319-64198-0_9

Singh R, Kuscu C, Quinlan A, Qi Y, Adli M (2015). Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Research 43:e118-e118. https://doi.org/10.1093/nar/gkv575 DOI: https://doi.org/10.1093/nar/gkv575

Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015). Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Scientific Reports 5:1-10. https://doi.org/10.1038/srep10342 DOI: https://doi.org/10.1038/srep10342

Thanh VH, Shibasaki KJJoA (2002). Major proteins of soybean seeds. Subunit structure of beta.-conglycinin. Journal of Agricultural Food Chemistry 26:692-695. https://doi.org/10.1021/jf60217a026 DOI: https://doi.org/10.1021/jf60217a026

Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009). High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442-445. https://doi.org/10.1038/nature07845 DOI: https://doi.org/10.1038/nature07845

Turnbull C, Lillemo M, Hvoslef-Eide TA (2021). Global regulation of genetically modified crops amid the gene edited crop boom–a review. Frontiers in Plant Science 12:258. https://doi.org/10.3389/fpls.2021.630396 DOI: https://doi.org/10.3389/fpls.2021.630396

Umburanas RC, Kawakami J, Ainsworth EA, Favarin JL, Anderle LZ, Dourado-Neto D, Reichardt K (2022). Changes in soybean cultivars released over the past 50 years in southern Brazil. Scientific Reports 12:1-14. https://doi.org/10.1038/s41598-021-04043-8 DOI: https://doi.org/10.1038/s41598-021-04043-8

Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics 11:636-646. https://doi.org/10.1038/nrg2842 DOI: https://doi.org/10.1038/nrg2842

Van Vu T, Sung YW, Kim J, Doan DTH, Tran MT, Kim J-Y (2019). Challenges and perspectives in homology-directed gene targeting in monocot plants. Rice 12:1-29. https://doi.org/10.1186/s12284-019-0355-1 DOI: https://doi.org/10.1186/s12284-019-0355-1

Wang J, Kuang H, Zhang Z, Yang Y, Yan L, Zhang M, Song S, Guan Y (2020a). Generation of seed lipoxygenase-free soybean using CRISPR-Cas9. The Crop Journal 8:432-439. https://doi.org/10.1016/j.cj.2019.08.008 DOI: https://doi.org/10.1016/j.cj.2019.08.008

Wang L, Sun S, Wu T, Liu L, Sun X, Cai Y, Li J, Jia H, Yuan S, Chen L (2020b). Natural variation and CRISPR/Cas9‐mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnology Journal 18:1869-1881. https://doi.org/10.1111/pbi.13346 DOI: https://doi.org/10.1111/pbi.13346

Warner K, Gupta M (2005). Potato chip quality and frying oil stability of high oleic acid soybean oil. Journal of Food Science 70:s395-s400. https://doi.org/10.1111/j.1365-2621.2005.tb11462.x DOI: https://doi.org/10.1111/j.1365-2621.2005.tb11462.x

Wolter F, Schindele P, Puchta H (2019). Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biology 19:1-8. https://doi.org/10.1186/s12870-019-1775-1 DOI: https://doi.org/10.1186/s12870-019-1775-1

Wu N, Lu Q, Wang P, Zhang Q, Zhang J, Qu J, Wang N (2020). Construction and analysis of GmFAD2-1A and GmFAD2-2A soybean fatty acid desaturase mutants based on CRISPR/Cas9 technology. International Journal of Molecular Sciences 21:1104. https://doi.org/10.3390/ijms21031104 DOI: https://doi.org/10.3390/ijms21031104

Xiao Z, Jin Y, Zhang Q, Lamboro A, Dong B, Yang Z, Wang P (2022). Construction and Functional Analysis of CRISPR/Cas9 Vector of FAD2 Gene Family in Soybean. Phyton 91:349-361. https://doi.org/10.32604/phyton.2022.017451 DOI: https://doi.org/10.32604/phyton.2022.017451

Xu H, Zhang L, Zhang K, Ran Y (2020). Progresses, challenges, and prospects of genome editing in soybean (Glycine max). Frontiers in Plant Science 11:1593. DOI: https://doi.org/10.3389/fpls.2020.571138

Yang B (2020). Grand challenges in genome editing in plants. Frontiers in Genome Editing 2:2. https://doi.org/10.3389/fgeed.2020.00002 DOI: https://doi.org/10.3389/fgeed.2020.00002

Yang X-P, Yu A, Xu C (2019). De novo domestication to create new crops. Yi Chuan= Hereditas 41:827-835. https://doi.org/10.16288/j.yczz.19-151

Zhang D, Hussain A, Manghwar H, Xie K, Xie S, Zhao S, … Ding F (2020a). Genome editing with the CRISPR‐Cas system: an art, ethics and global regulatory perspective. Plant Biotechnology Journal 18:1651-1669. https://doi.org/10.1111/pbi.13383 DOI: https://doi.org/10.1111/pbi.13383

Zhang H-X, Zhang Y, Yin H (2019a). Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Molecular Therapy 27:735-746. https://doi.org/10.1016/j.ymthe.2019.01.014 DOI: https://doi.org/10.1016/j.ymthe.2019.01.014

Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R, Yang H, Cheng H, Yu D (2020b). Multiplex CRISPR/Cas9‐mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnology Journal 18:1384-1395. https://doi.org/10.1111/pbi.13302 DOI: https://doi.org/10.1111/pbi.13302

Zhang T, Zhao Y, Ye J, Cao X, Xu C, Chen B, … Yang X (2019b). Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnology Journal 17:1185. https://doi.org/10.1111/pbi.13095 DOI: https://doi.org/10.1111/pbi.13095

Zhao J, Lai L, Ji W, Zhou Q (2019a). Genome editing in large animals: current status and future prospects. National Science Review 6:402-420. https://doi.org/10.1093/nsr/nwz013 DOI: https://doi.org/10.1093/nsr/nwz013

Zhao Q, Tong Y, Yang C, Yang Y, Zhang M (2019b). Identification and mapping of a new soybean male-sterile gene, mst-M. Frontiers in Plant Science 10:94. https://doi.org/10.3389/fpls.2019.00094 DOI: https://doi.org/10.3389/fpls.2019.00094

Zheng N, Li T, Dittman JD, Su J, Li R, Gassmann W, … Yang B (2020). CRISPR/Cas9-based gene editing using egg cell-specific promoters in Arabidopsis and soybean. Frontiers in Plant Science 800. https://doi.org/10.3389/fpls.2020.00800 DOI: https://doi.org/10.3389/fpls.2020.00800

Zheng Q, Ji C, Liu R, Xu J, Wang Y, Yang A, Zheng W, Cao J (2021). Detection of soybean transgenic event GTS-40-3-2 using electric field-induced release and measurement (EFIRM). Analytical and Bioanalytical Chemistry 413:6671-6676. https://doi.org/10.1007/s00216-021-03634-8 DOI: https://doi.org/10.1007/s00216-021-03634-8

Zhong Z, Sretenovic S, Ren Q, Yang L, Bao Y, Qi C, Yuan M, He Y, Liu S, Liu X (2019). Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Molecular Plant 12:1027-1036. https://doi.org/10.1016/j.molp.2019.03.011 DOI: https://doi.org/10.1016/j.molp.2019.03.011

Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y (2015). Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology 33:408-414. https://doi.org/10.1038/nbt.3096 DOI: https://doi.org/10.1038/nbt.3096

Zhu H, Li C, Gao C (2020). Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology 21:661-677. https://doi.org/10.1038/s41580-020-00288-9 DOI: https://doi.org/10.1038/s41580-020-00288-9

Zou P, Duan L, Zhang S, Bai X, Liu Z, Jin F, Sun H, Xu W, Chen R (2020). Target specificity of the CRISPR-Cas9 system in Arabidopsis thaliana, Oryza sativa, and Glycine max genomes. Journal of Computational Biology 27:1544-1552. https://doi.org/10.1089/cmb.2019.0453 DOI: https://doi.org/10.1089/cmb.2019.0453

Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, … Peres LEP (2018). De novo domestication of wild tomato using genome editing. Nature Biotechnology 36:1211-1216. https://doi.org/10.1038/nbt.4272 DOI: https://doi.org/10.1038/nbt.4272

Published

2022-05-23

How to Cite

JIANING, G., ZHIMING, X., RASHEED, A., TIANCONG, W., QIAN, Z., ZHUO, Z., ZHUO, Z., GARDINER, J. J., AHMAD, I., XIAOXUE, W., JIAN, W., & YUHONG, G. (2022). CRISPR/Cas9 applications for improvement of soybeans, current scenarios, and future perspectives. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(2), 12678. https://doi.org/10.15835/nbha50212678

Issue

Section

Review Articles
CITATION
DOI: 10.15835/nbha50212678

Most read articles by the same author(s)