Biofortification with nanoparticles and zinc nitrate plus chitosan in green beans: effects on yield and mineral content

Authors

  • Alejandro PALACIO-MÁRQUEZ Centro de Investigación en Alimentación y Desarrollo A.C. CIAD, Av. 4 Sur 3828, Pablo Gómez, 33088, Delicias, Chihuahua (MX)
  • Carlos A. RAMÍREZ-ESTRADA Centro de Investigación en Alimentación y Desarrollo A.C. CIAD, Av. 4 Sur 3828, Pablo Gómez, 33088, Delicias, Chihuahua (MX)
  • Esteban SÁNCHEZ Centro de Investigación en Alimentación y Desarrollo A.C. CIAD, Av. 4 Sur 3828, Pablo Gómez, 33088, Delicias, Chihuahua (MX)
  • Damaris L. OJEDA-BARRIOS Universidad Autónoma de Chihuahua Facultad de Ciencias Agrotecnológicas, Av. Pascual Orozco s/n, Campus 1, Santo Niño, Chihuahua (MX)
  • Celia CHÁVEZ-MENDOZA Centro de Investigación en Alimentación y Desarrollo A.C. CIAD, Av. 4 Sur 3828, Pablo Gómez, 33088, Delicias, Chihuahua (MX)
  • Juan P. SIDA-ARREOLA Universidad Tecnológica de Camargo Unidad Meoqui, C. Julio César, J. C. Viramontes 237, Zona Industrial, 33130 Pedro Meoqui, Chihuahua (MX)

DOI:

https://doi.org/10.15835/nbha50212672

Keywords:

biofortification, bioregulators, nanofertilizers, Phaseolus vulgaris, zinc

Abstract

Approximately 33% of the world's population is affected by Zinc (Zn) deficiency, making it the fifth leading cause of human disease and mortality. An innovative strategy to this problem in the food diet is biofortification. Therefore, the use of nanotechnology emerges as a possible way to achieve the optimal development of plants in a sustainable and precise way. The objective of the present study was to increase the Zn content in bean plants cv. ‘Strike’, through the application of nanoparticles versus Zn nitrate plus chitosan. Two sources of Zn were applied via foliar: Zn nanoparticles and Zn nitrate at doses of 0, 25, 50 and 100 ppm with and without chitosan. The results indicate that the application of Zn favours the biofortification process, finding increases for all the treatments used. The treatments that stood out were Zn nitrate plus chitosan at 50 and 100 ppm, which increased the Zn content in fruits by more than 110%. The application of Zn nanoparticles at 25 ppm and Zn nitrate at 50 ppm favoured biomass accumulation and production. Furthermore, the addition of chitosan helped biomass and yield, especially when combined with Zn nitrate. Finally, indicate that a greater number of studies are required regarding the use of nanoparticles and chitosan in horticulture to determine with certainty their effect on the physiology and nutrition of plants.

References

Abu-Muriefah SS (2013). Effect of chitosan on common bean (Phaseolus vulgaris L.) plants grown under water stress conditions. International Research Journal of Agricultural Science and Soil Science 3(6):192-199.

Akanbi-Gada MA, Ogunkunle CO, Ilesanmi AO, Femi-Adepoju AG, Sidiq LO, Fatoba PO (2019). Effects of zinc oxide nanoparticles on chlorophyll content, growth attributes, antioxidant enzyme activities and bioaccumulation of common bean (Phaseolus vulgaris L.) grown in soil medium. IOSR Journal of Environmental Science, Toxicology and Food Technology 13(10):09-15. https://www.doi.org/10.9790/2402-1310010915

Bilski J, Jacob D, Soumaila F, Kraft C, Farnsworth A (2012). Agronomic biofortification of cereal crop plants with Fe, Zn, and Se, by the utilization of coal fly ash as plant growth media. Advances in Bioresearch 3(4):130. https://www.ncbi.nlm.nih.gov/pubmed/30288015

Blair MW (2013). Mineral biofortification strategies for food staples: the example of common bean. Journal of Agricultural and Food Chemistry 61(35):8287-8294. https://doi.org/10.1021/jf400774y

Blasco B (2015). Biofortificación: beneficios potenciales para los cultivos y la salud humana [Biofortification: potential benefits for crops and human health]. Retrieved 2021 June 01 from http://aefa-agronutrientes.org/la-biofortificacion

Bouis HE, Welch RM (2010). Biofortification-a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science 50:20-32. https://doi.org/10.2135/cropsci2009.09.0531

Bourke CD, Berkley JA, Prendergast AJ (2016). Immune dysfunction as a cause and consequence of malnutrition. Trends in immunology 37(6):386-398. https://doi.org/10.1016/j.it.2016.04.003

Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012). Function of nutrients: micronutrients. In Marschner's Mineral Nutrition of Higher Plants. Academic Press, pp 191-248.

Cakmak I, Kutman UÁ (2018). Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science 69(1):172-180. https://doi.org/10.1111/ejss.12437

Calvo NIR, Echeverría HE, Rozas HS (2008) Comparación de métodos de determinación de nitrógeno y azufre en planta: Implicancia en el diagnóstico de azufre en trigo [Comparison of methods for determining nitrogen and sulfur in plants: Implication in the diagnosis of sulfur in wheat]. Ciencia del Suelo 26:161-167.

Cambraia TLL, Fontes RLF, Vergütz L, Vieira RF, Neves JCL, Corrêa PS, Dias RFN (2019). Agronomic biofortification of common bean grain with zinc. Pesquisa Agropecuária Brasileira 54. https://doi.org/10.1590/S1678-3921.pab2019.v54.01003

Caro CR, Coronell MDC, Arrollo J, Martínez G, Majana LS, Sarmiento-Rubiano LA (2016). La deficiencia de zinc: un problema global que afecta la salud y el desarrollo cognitivo [Zinc deficiency: a global problem affecting health and cognitive development]. Archivos Latinoamericanos de Nutrición 66(3). http://ve.scielo.org/pdf/alan/v66n3/art02.pdf

Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, … Saharan V (2019). Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2018.12.27

Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade JM (2017). Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydrate Polymers 165:394-401. https://doi.org/10.1016/j.carbpol.2017.02.061

Elizabath A, Bahadur V, Misra P, Prasad VM, Thomas T (2017). Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of carrot (Daucus carota L.). Journal of Pharmacognosy and Phytochemistry 6(4):1266-1269. https://www.phytojournal.com/archives/2017/vol6issue4/PartS/6-4-87-825.pdf

El-Miniawy SM, Ragab ME, Youssef SM, Metwally AA (2013). Response of strawberry plants to foliar spraying of chitosan. Research Journal of Agriculture and Biological Sciences 9(6):366-372. http://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2013/366-372.pdf

El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Elmahrouk M, Bayoumi Y, ... Schnug E. (2018). Plant nano-nutrition: perspectives and challenges. In Nanotechnology, food security and water treatment pp. 129-161. Springer, Cham.

FAO. (2019). ODS 2. Hambre cero (Objetivos de Desarrollo Sostenible) [Zero Hunger (Sustainable Development Goals)]. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Retrieved 2021 June 02 from http://www.fao.org/sustainable-development-goals/goals/goal-2/es

Feregrino-Perez AA, Magaña-López E, Guzmán C, Esquivel K (2018). A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Scientia Horticulturae 238:126-137. https://doi.org/10.1016/j.scienta.2018.03.060

Fernández V, Sotiropoulos T, Brown PH (2013). Foliar fertilization: scientific principles and field pratices. International fertilizer industry association. Paris, France.

Fernández-Valenciano AF, Sánchez-Chávez E (2017). Estudio de las propiedades fisicoquímicas y calidad nutricional en distintas variedades de frijol consumidas en México [Study of the physicochemical properties and nutritional quality in different bean varieties consumed in Mexico]. Nova Scientia 9(18):133-148. https://doi.org/10.21640/ns.v9i18.763

García-López JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldivar RH, Barriga-Castro ED, Vázquez-Alvarado R, ... Zavala-García F (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8(8):254. https://doi.org/10.3390/plants8080254

Gonzalez D, Almendros P, Obrador A, Alvarez JM (2019). Zinc application in conjunction with urea as a fertilization strategy for improving both nitrogen use efficiency and the zinc biofortification of barley. Journal of the Science of Food and Agriculture 99(9):4445-4451. https://doi.org/10.1002/jsfa.9681

Hafeez BMKY, Khanif YM, Saleem M (2013). Role of zinc in plant nutrition-a review. Journal of Experimental Agriculture International 374-391. https://doi.org/10.9734/AJEA/2013/2746

Haider MU, Hussain M, Farooq M, Ul-Allah S, Ansari MJ, Alwahibi MS, Farooq S (2021). Zinc biofortification potential of diverse mungbean (Vigna radiata L. Wilczek) genotypes under field conditions. PLoS One 16(6):e0253085. https://doi.org/10.1371/journal.pone.0253085

Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants 25(2):313-326. https://doi.org/10.1007/s12298-018-0633-1

Jha AB, Warkentin TD (2020). Biofortification of pulse crops: Status and future perspectives. Plants 9(1):73. https://doi.org/10.3390/plants9010073

Joshi R, Singla-Pareek SL, Pareek A (2018). Engineering abiotic stress response in plants for biomass production. Journal of Biological Chemistry 293(14):5035-5043. https://doi.org/10.1074/jbc.TM117.000232

Kane AV, Dinh DM, Ward HD (2015). Childhood malnutrition and the intestinal microbiome. Pediatric Research 77(1-2):256-262. https://doi.org/10.1038/pr.2014.179

Mahmood N, Abbasi NA, Hafiz IA, Ali I, Zakia S (2017). Effect of biostimulants on growth, yield and quality of bell pepper cv. Yolo Wonder. Pakistan Journal of Agricultural Sciences 54(2). https://doi.org/10.21162/PAKJAS/17.5653

Malerba M, Cerana R (2018). Recent advances of chitosan applications in plants. Polymers 10(2):118. https://doi.org/10.3390/polym10020118

Mirbolook A, Rasouli-Sadaghiani M, Sepehr E, Lakzian A, Hakimi M (2021). Synthesized Zn (II)-amino acid and-chitosan chelates to increase Zn uptake by bean (Phaseolus vulgaris) plants. Journal of Plant Growth Regulation 40:831-847. https://doi.org/10.1007/s00344-020-10151-y

Mitra GN (2015). Regulation of nutrient uptake by plants. New Delhi, Springer, 10, pp 978-981.

Montoya M, Vallejo A, Recio J, Guardia G, Alvarez JM (2020). Zinc–nitrogen interaction effect on wheat biofortification and nutrient use efficiency. Journal of Plant Nutrition and Soil Science 183(2):169-179. https://doi.org/10.1002/jpln.201900339

Mousavi SR (2011). Zinc in crop production and interaction with phosphorus. Australian Journal of Basic and Applied Sciences 5(9):1503-1509.

OMS (2018). Malnutrición. Organización Mundial de la Salud Retrieved 2021 May 12 from https://www.who.int/es/news-room/fact-sheets/detail/malnutrition

Petry N, Egli I, Gahutu JB, Tugirimana PL, Boy E, Hurrell R (2014). Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. 2. The Journal of Nutrition 144(11):1681-1687. https://doi.org/10.3945/jn.114.192989

Pichyangkura R, Chadchawan S (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulturae 196:49-65. https://doi.org/10.1016/j.scienta.2015.09.031

Poblaciones MJ, Rengel Z (2016). Soil and foliar zinc biofortification in field pea (Pisum sativum L.): Grain accumulation and bioavailability in raw and cooked grains. Food Chemistry 212:427-433. https://doi.org/10.1016/j.foodchem.2016.05.189

Raliya R, Saharan V, Dimkpa C, Biswas P (2017). Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of Agricultural and Food Chemistry 66(26):6487-6503. https://doi.org/10.1021/acs.jafc.7b02178

Reed, S, Neuman H, Moscovich S, Glahn RP, Koren O, Tako E (2015). Chronic zinc deficiency alters chick gut microbiota composition and function. Nutrients 7(12):9768-9784. https://doi.org/10.3390/nu7125497

Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P (2016). Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal of Agricultural and Food Chemistry 64(31):6148-6155. https://doi.org/10.1021/acs.jafc.6b02239

Salama DM, Osman SA, Abd El-Aziz ME, Abd Elwahed MS, Shaaban EA (2019). Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatalysis and Agricultural Biotechnology 18:101083. https://doi.org/10.1016/j.bcab.2019.101083

Salimi A, Oraghi Ardebili Z, Salehibakhsh M (2019). Potential benefits of foliar application of chitosan and Zinc in tomato. Iranian Journal of Plant Physiology 9(2):2703-2708. https://doi.org/10.22034/IJPP.2019.664574

Salinas-Ramírez N, Escalante-Estrada JA, Rodríguez-González M, Sosa-Montes E (2012). Rendimiento y calidad nutrimental de frijol ejotero en dos ambientes [Yield and nutritional quality of green beans in two environments]. Revista Fitotecnia Mexicana 35(4):317-323. http://www.scielo.org.mx/pdf/rfm/v35n4/v35n4a8.pdf

SAS (2004). SAS Procedures Guide: Version 9 (Vol. 1). Sas Inst.

Shehata SA, Fawzy ZF, El-Ramady HR (2012). Response of cucumber plants to foliar application of chitosan and yeast under greenhouse conditions. Australian Journal of Basic and Applied Sciences 6(4):63-71. http://www.ajbasweb.com/old/ajbas/2012/April/63-71.pdf

Sida-Arreola JP, Sánchez E, Ojeda-Barrios DL, Ávila-Quezada GD, Flores-Córdova MA, Márquez-Quiroz C, Preciado-Rangel P (2017). Can biofortification of zinc improve the antioxidant capacity and nutritional quality of beans?. Emirates Journal of Food and Agriculture 29(3):237-241. https://doi.org/10.9755/ejfa.2016-04-367

Singh MK, Prasad SK (2014). Agronomic aspects of zinc biofortification in rice (Oryza sativa L.). Proceedings of the national academy of sciences, India section B: biological Sciences 84(3):613-623. https://doi.org/10.1007/s40011-014-0329-4

Sturikova H, Krystofova O, Huska D, Adam V (2018). Zinc, zinc nanoparticles and plants, Journal of Hazardous Materials 349:101-110. https://doi.org/10.1016/j.jhazmat.2018.01.040

Suárez-Martínez SE, Ferriz-Martínez RA, Campos-Vega R, Elton-Puente JE, de la Torre-Carbot K, García-Gasca T (2016). Bean seeds: leading nutraceutical source for human health. CyTA-Journal of Food 14(1):131-137. https://doi.org/10.1080/19476337.2015.1063548

Taboada-Lugo N (2017). El zinc y el cobre: micronutrientes esenciales para la salud humana [Zinc and copper: essential micronutrients for human health]. Acta Médica del Centro 11(2):79-89. https://www.medigraphic.com/pdfs/medicadelcentro/mec-2017/mec172n.pdf

Vasconcelos MW (2014). Chitosan and chitooligosaccharide utilization in phytoremediation and biofortification programs: current knowledge and future perspectives. Frontiers in Plant Science 5:616. https://doi.org/10.3389/fpls.2014.00616

Weih M, Hamnér K, Pourazari F (2018). Analyzing plant nutrient uptake and utilization efficiencies: comparison between crops and approaches. Plant and Soil 430(1):7-21. https://doi.org/10.1007/s11104-018-3738-y

White PJ, Broadley MR (2005). Biofortifying crops with essential mineral elements. Trends in plant science 10(12):586-593. https://doi.org/10.1016/j.tplants.2005.10.001

Wolf B (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis 13(12):1035-1059. https://doi.org/10.1080/00103628209367332

Published

2022-05-23

How to Cite

PALACIO-MÁRQUEZ, A., RAMÍREZ-ESTRADA, C. A., SÁNCHEZ, E., OJEDA-BARRIOS, D. L., CHÁVEZ-MENDOZA, C., & SIDA-ARREOLA, J. P. (2022). Biofortification with nanoparticles and zinc nitrate plus chitosan in green beans: effects on yield and mineral content. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(2), 12672. https://doi.org/10.15835/nbha50212672

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha50212672

Most read articles by the same author(s)

1 2 > >>