Copper oxide nanoparticles biosynthetized improve germination and bioactive compounds in wheat sprouts

  • Hortensia ORTEGA-ORTIZ Applied Chemistry Research Center, Department of Advanced Materials, Enrique Reyna H. No. 140, San José of the Cerritos, 25294, Saltillo, Coahuila (MX)
  • Jazmín M. GAUCIN-DELGADO National Technological Institute of Mexico/ Torreon Technological Institute, Carretera Torreón-San Pedro km 7.5, 27170, Torreón, Coahuila (MX)
  • Pablo PRECIADO-RANGEL National Technological Institute of Mexico/ Torreon Technological Institute, Carretera Torreón-San Pedro km 7.5, 27170, Torreón, Coahuila (MX)
  • Manuel FORTIS HERNANDEZ National Technological Institute of Mexico/ Torreon Technological Institute, Carretera Torreón-San Pedro km 7.5, 27170, Torreón, Coahuila (MX)
  • Luis G. HERNANDEZ-MONTIEL Biological Research Center of the Northwest, Av. Politecnico Nacional 195, Col. Playa Palo Santa Rita, 23090, La Paz, Baja California Sur (MX)
  • Efraín DE La CRUZ-LAZARO Academic Division of Agricultural Sciences-Juarez Autonomous University of Tabasco, Km. 25, Villahermosa-Teapa Highway, Ra. The Huasteca, 2nd. Section. Center, Tabasco 86280 (MX)
  • Liliana LARA-CAPISTRÁN Veracruzana University-Xalapa Campus, Gonzalo Aguirre Beltrán University Circuit s/n, university area, Xalapa, Veracruz (MX)
Keywords: antioxidants, biosynthesized, CuONPs, Triticum aestivum L

Abstract

Metal nanoparticles have many positive effects in improving crop production and productivity and allow for increased germination and rapid crop establishment under field conditions. The metallic nanoparticles applied in this study were copper oxide nanoparticles (CuONPs) biosynthesized using orange peel (Citrus X sinensis) as a reducing agent to avoid or reduce toxicity in wheat seeds and sprouts. This study determined the effect of CuONPs on germination, radicle and plumule length, as well as the production of phytochemical compounds in wheat sprouts. The seeds were treated with suspensions of CuONPs at the following concentrations: 0, 0.5, 1, 2, 4 and 6 mg mL-1. The results indicate that the use of low doses of CuONPs (0.5 mg mL-1), improved germination, vigor, plumule and radicle length, in addition to increasing the biosynthesis of phytochemical compounds in wheat shoots. A high concentration of CuONPs (6 mg mL-1) causes inhibitory effects due to Cu accumulation and phytotoxicity in plant tissue. The use of CuONPs for green synthesis is a viable alternative to obtain beneficial effects in germination and seedling development, as well as greater secondary metabolite production.

Metrics

Metrics Loading ...

References

Aguirre-Bolaños M, Benítez-Flores JC, González-Valle MR, Hernández-Portilla LB, Quintanar-Zúñiga RE, Flores-Ortiz CM (2017). Efecto del almacenamiento prolongado sobre la viabilidad y perfil de ácidos grasos en semillas deEncyclia adenocarpa (Lex.) Schltr. Revista Fitotecnia Mexicana 40(2):151-60. https://doi.org/10.35196/rfm.2017.2.151-160

Al-Hakkani MF (2020). Biogenic copper nanoparticles and their applications: A review. Applied Sciences 2(3):1-20. https://doi.org/10.1007/s42452-020-2279-1

Antisari LV, Carbone S, Bosi S, Gatti A, Dinelli G (2018). Engineered nanoparticles effects in soil-plant system: Basil (Ocimum basilicum L.) study case. Applied Soil Ecology 123:551-60. https://doi.org/10.1016/j.apsoil.2018.01.007

Bhagat D, Suryawanshi I, Gurnule W, Sawant S, Chavan P (2021). Greener synthesis of CuO nanoparticles for enhanced development of latent fingerprints. Materials Today: Proceedings 36:747-750, https://doi.org/10.1016/j.matpr.2020.05.357

Bhuvaneshwari V, Vaidehi D, Logpriya S (2018). Green synthesis of copper oxide nanoparticles for biological applications. Microbiol Curr Res. 2(1):9-10. https://doi.org/10.4066 / 2591-8036.e105

Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D (2018). An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia 71(6):191-209. https://doi.org/10.1080/00087114.2018.1503496

Bonilla-Bird N, Ye Y, Akter T, Valdes-Bracamontes C, Darrouzet-Nardi A, Saupe G (2020). Effect of copper oxide nanoparticles on two varieties of sweet potato plants. Plant Physiology Biochemistry 154:277-286. https://doi.org/10.1016/j.plaphy.2020.06.009

Bridley A, Daffin Jr LW, Cuttler C, Campoli J, Cummings JA. (2020). Defining psychopathology. Abnormal Psychology. Retrieved 2021 August 20 from: https://openpress.usask.ca/abnormalpsychology/chapter/part-3/

Cartaya O, Guridi F, Cabrera A, Moreno AM, Hernández Y (2017). Efecto de la aplicación foliar de oligogalacturónidos a plántulas de tomate (Solanum Lycopersicum L.) en la fitoextracción de cobre de suelo contaminado. Cultivos Tropicales 38:142-147.

Carvajal C, Márquez M, Gutiérrez B, González-Vera A, Arellano J, Ávila M (2017). Aspectos de fisiología, deterioro y calidad en semilla de soya. Alcance 1:76-92.

Chaudhary RG, Bhusari GS, Tiple AD, Rai AR, Somkuvar SR, Potbhare AK (2019). Metal/metal oxide nanoparticles: toxicity, applications, and future prospects. Current Pharmaceutical Design 25:4013-29. https://doi.org/10.2174/1381612825666191111091326

Chaudhary S, Rohilla D, Umar A, Kaur N, Shanavas A (2019). Synthesis and characterizations of luminescent copper oxide nanoparticles: toxicological profiling and sensing applications. Ceramics International 45:15025-15035. https://doi.org/10.1016/j.ceramint.2019.04.239

Chung I-M, Rajakumar G, Subramanian U, Venkidasamy B, Thiruvengadam M (2019). Impact of copper oxide nanoparticles on enhancement of bioactive compounds using cell suspension cultures of Gymnema sylvestre (Retz.) R. Br. Applied Sciences 9:2165. https://doi.org/10.3390/app9102165

Costa Da M, Sharma P (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54: 110-119. https://doi.org/10.1007/s11099-015-0167-5

El Shafey AM (2020). Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing Synthesis 9:304-339. https://doi.org/10.1515/gps-2020-0031

Escobedo Paredes CR, Rodríguez Soto JC, Contreras Quiñones M, Aspajo Villalaz C, Calderón Peña A, León Alcántara E (2020). Citotoxicidad y genotoxicidad de nanopartículas de cobre sobre Allium cepa L. (Amaryllidaceae). Arnaldoa 27:181-90. http://dx.doi.org/10.22497/arnaldoa.271.27110

Faraji J, Sepehri A, Salcedo-Reyes JC (2018). Titanium dioxide nanoparticles and sodium nitroprusside alleviate the adverse effects of cadmium stress on germination and seedling growth of wheat (Triticum aestivum L.). Universitas Scientiarum 23:61-87. https://doi.org/10.11144/javeriana.sc23-1.tdna

Fardood ST, Ramazani A, Moradi S (2017). Green synthesis of Ni–Cu–Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Journal of Sol-Gel Science Technology 82:432-439. https://doi.org/10.1007/s10971-017-4310-6

Feoktistova Victorava L, Clark Feoktistova Y (2018). Metabolism of copper. Its consequences for human health. Medisur. 16(4):579-587.

Fidelis M, de Moura C, Kabbas Junior T, Pap N, Mattila P, Mäkinen (2019). Fruit seeds as sources of bioactive compounds: sustainable production of high value-added ingredients from by-products within circular economy. Molecules 24:3854. https://doi.org/10.3390/molecules24213854

García-Gómez C, Fernández MD. (2019). Impacts of metal oxide nanoparticles on seed germination, plant growth and development. Analysis, Fate, Toxicity of Engineered Nanomaterials in Plants 84:75-124. https://doi.org/10.1016/bs.coac.2019.04.007

Ghidan AY, Al-Antary TM, Awwad AM (2016). Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on green peach aphid. Environmental Nanotechnology Monitoring Management 6:95-98. https://doi.org/10.1016/j.enmm.2016.08.002

Heikal YM, Şuţan NA, Rizwan M, Elsayed A (2020). Green synthesized silver nanoparticles induced cytogenotoxic and genotoxic changes in Allium cepa L. varies with nanoparticles doses and duration of exposure. Chemosphere 243:125430. https://doi.org/10.1016/j.chemosphere.2019.125430

Hernández-Hernández H, Quiterio-Gutiérrez T, Cadenas-Pliego G, Ortega-Ortiz H, Hernández-Fuentes AD, Cabrera de la Fuente M (2019). Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants 8:355. https://doi.org/10.3390/plants8100355

Hidalgo A, Šaponjac VT, Ćetković G, Šeregelj V, Čanadanović-Brunet J, Chiosa D, Brandolini AJ (2019). Antioxidant properties and heat damage of water biscuits enriched with sprouted wheat and barley. LWT 114:108423. https://doi.org/10.1016/j.lwt.2019.108423.

Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR (2015). Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environmental Science: Processes 17:177-185. https://doi.org/10.1039/C4EM00551A

Hu Y-L, Gao J-Q (2010). Potential neurotoxicity of nanoparticles. International Journal of Pharmaceutics 394:115-21. https://doi.org/10.1016/j.ijpharm.2010.04.026

International Seed Testing Association (ISTA). (1999). International rules for seed testing. Rules 1:333.

Izumi F, Ikeda T (2015). Implementation of the Williamson-Hall and Halder-Wagner methods into RIETAN-FP. Nagoya Institute of Technology Repository System 3:33-38.

Javed R, Mohamed A, Yücesan B, Gürel E, Kausar R, Zia M (2017). CuO nanoparticles significantly influence in vitro culture, steviol glycosides, and antioxidant activities of Stevia rebaudiana Bertoni. Plant Cell, Tissue Organ Culture 131:611-620. https://doi.org/10.1007/s11240-017-1312-6

Joshi H, Kumar R, Pandey D, Jariwala C (2020). Effect of plasma and nanotechnology on nutrient use efficiency of wheat (Triticum aestivum L.). Journal of Pharmacognosy Phytochemistry 9:137-141.

Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B (2020). Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiology Biochemistry 156: 221-232. https://doi.org/10.1016/j.plaphy.2020.09.018

Kolesnikov S, Timoshenko A, Kazeev KS, Akimenko YV, Myasnikova M (2019). Ecotoxicity of copper, nickel, and zinc nanoparticles assessment on the basis of biological indicators of chernozems. Eurasian Soil Science 52:982-987. https://doi.org/10.18470/1992-1098-2020-1-130-136

Kranjc E, Drobne D (2019). Nanomaterials in plants: a review of hazard and applications in the agri-food sector. Nanomaterials 9:1094. https://doi.org/10.3390/nano9081094

Kumar A, Pandey G (2017). A review on the factors affecting the photocatalytic degradation of hazardous materials. Material Science & Engineering International 1:1-10. https://doi.org/10.15406/mseij.2017.01.00018

Kumar VK, Muthukrishnan S, Rajalakshmi RJ (2020). Phytostimulatory effect of phytochemical fabricated nanosilver (AgNPs) on Psophocarpus tetragonolobus (L.) DC. seed germination: An insight from antioxidative enzyme activities and genetic similarity studies. Current Plant Biology 23:100158. https://doi.org/10.1016/j.cpb.2020.100158

Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing BJ (2016). Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661-670. https://doi.org/10.1016/j.chemosphere.2015.09.028

León-Silva S, Fernández-Luqueño F, López-Valdez F (2018). Engineered nanoparticles: are they an inestimable achievement or a health and environmental concern? In: Packages E (Ed). Agricultural Nanobiotechnology. Springer 2:183-212. https://doi.org/10.1007/978-3-319-96719-6_10

Li R, He J, Xie H, Wang W, Bose SK, Sun Y (2019). Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). International Journal of Biological Macromolecules 126:91-100. https://doi.org/10.1016/j.ijbiomac.2018.12.118

Lopez-Lima D, Mtz-Enriquez AI, Carrión G, Basurto-Cereceda S, Pariona N (2020). The bifunctional role of copper nanoparticles in tomato: Effective treatment for Fusarium wilt and plant growth promoter. Scientia Horticulturae 277:109810. https://doi.org/10.1016/j.scienta.2020.109810

López-Vargas ER, Ortega-Ortíz H, Cadenas-Pliego G, de Alba Romenus K, Cabrera de la Fuente M, Benavides-Mendoza A (2018). Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Journal of Applied Sciences 8:1020. https://doi.org/10.3390/app8071020

Lugo NT (2016). Papel del ácido fólico, zinc y cobre en la prevención primaria de los defectos congénitos. Revista Cubana de Medicina General Integral 32(4):1-10.

Mali SC, Raj S, Trivedi RJ (2019). Biosynthesis of copper oxide nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochemistry Biophysics Reports 20:100699. https://doi.org/10.1016/j.bbrep.2019.100699

Markova-Deneva I (2010). Infrared spectroscopy investigation of metallic nanoparticles based on copper, cobalt, and nickel synthesized through borohydride reduction method. Journal of the University of Chemical Technology Metallurgy 45:351-378.

Mehdizadeh T, Zamani A, Froushani SMA (2020). Preparation of Cu nanoparticles fixed on cellulosic walnut shell material and investigation of its antibacterial, antioxidant and anticancer effects. Heliyon 6:e03528. https://doi.org/10.1016/j.heliyon.2020.e03528

Minkina T, Rajput V, Fedorenko G, Fedorenko A, Mandzhieva S, Sushkova S (2020). Anatomical and ultrastructural responses of Hordeum sativum to the soil spiked by copper. Environmental Geochemistry Health 42:45-58. https://doi.org/10.1007/s10653-019-00269-8

Miras R, Morin I, Jacquin O, Cuillel M, Guillain F, Mintz E (2008). Interacción entre glutatión, Atx1 y cobre. 1. Dimerización de Atx1 inducida por glutatión de cobre (I). Revista de Química Biológica Inorgánica: JBIC: Una publicación de la Sociedad de Química Biológica Inorgánica 13:195-205. https://doi.org/10.1007/s00775-007-0310-2

Mortezaee K, Najafi M, Samadian H, Barabadi H, Azarnezhad A, Ahmadi AJ (2019). Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chemico-Biological Interactions 312:108814. https://doi.org/10.1016/j.cbi.2019.108814

Mosa KA, El-Naggar M, Ramamoorthy K, Alawadhi H, Elnaggar A, Wartanian S (2018). Copper nanoparticles induced genotoxicty, oxidative stress, and changes in Superoxide Dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Frontiers in Plant Science 9:872-882. https://doi.org/10.3389/fpls.2018.00872

Nazar N, Bibi I, Kamal S, Iqbal M, Nouren S, Jilani K (2018). Cu nanoparticles synthesis using biological molecule of P. granatum seeds extract as reducing and capping agent: Growth mechanism and photo-catalytic activity. International Journal of Biological Macromolecules 106:1203-10. https://doi.org/10.1016/j.ijbiomac.2017.08.126

Oli HB, Sharma N, Ekaraj K, Subedee A, Timilsina R (2018). Green synthesis of copper nanoparticles using Zingiber officinale extract and characterization. Journal of Nepal Chemical Society 39:10-17. https://doi.org/10.3126/jncs.v39i0.27008

Paredes CRE, Soto JCR, Quiñones MC, Villalaz CA, Peña AC, Alcántara EL (2020). Citotoxicidad y genotoxicidad de nanopartículas de cobre sobre Allium cepa L. (Amaryllidaceae). Arnaldoa 27:e108-e112. http://dx.doi.org/10.22497/arnaldoa.271.27110

Parsai T, Kumar A (2019). Understanding effect of solution chemistry on heteroaggregation of zinc oxide and copper oxide nanoparticles. Chemosphere 235:457-469. https://doi.org/10.1016/j.chemosphere.2019.06.171

Pelegrino MT, Kohatsu MY, Seabra AB, Monteiro LR, Gomes DG, Oliveira HC, ... Lange CN (2020). Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environmental Monitoring and Assessment 192:1-14. https://doi.org/10.1007/s10661-020-8188-3

Pham KL, Schmollinger S, Merchant SS, Strenkert D (2022). Chlamydomonas ATX1 is essential for Cu distribution to multiple cupro-enzymes and maintenance of biomass in conditions demanding cupro-enzyme-dependent metabolic pathways. Plant Direct 6:e383. https://doi.org/10.1002/pld3.383

Prieto-Méndez J, Aquino-Torres E, Pérez-Ríos SR, Trejo-González N, Prieto-García F (2019). Seed germination of beans (Phaseolus vulgaris) with nano-particles of iron. Bulgarian Journal of Agricultural Science 25:283-287.

Qamar H, Rehman S, Chauhan DK, Tiwari AK, Upmanyu V (2020). Green synthesis, characterization and antimicrobial activity of the copper oxide nanomaterial derived from Momordica charantia. International Journal of Nanomedicine 15:2541-2553. https://doi.org/10.2147 / IJN.S240232

Quiterio-Gutiérrez T, Ortega-Ortiz H, Cadenas-Pliego G, Hernández-Fuentes AD, Sandoval-Rangel A, Benavides-Mendoza A (2019). The application of selenium and copper nanoparticles modifies the biochemical responses of tomato plants under stress by Alternaria solani. International Journal of Molecular Sciences 20:1950. https://doi.org/10.3390/ijms20081950

Rafique M, Shaikh AJ, Rasheed R, Tahir MB, Bakhat HF, Rafique MS (2017). A review on synthesis, characterization and applications of copper nanoparticles using green method. Nano Energy 12:1750043. https://doi.org/10.1142/S1793292017500436

Rai M, Ingle AP, Pandit R, Paralikar P, Shende S, Gupta I (2018). Copper and copper nanoparticles: role in management of insect-pests and pathogenic microbes. Nanotechnology Reviews 7:303-315. https://doi.org/10.1515/ntrev-2018-0031

Rajput V, Minkina T, Sushkova S, Behal A, Maksimov A, Blicharska E (2020). ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environmental Geochemistry Health 42:147-158. https://doi.org/10.1007/s10653-019-00317-3

Rajput V, Minkina T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V (2018). Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. BioNanoScience 8:36-42. https://doi.org/10.1007/s12668-017-0466-3

Ramzan R, Kadenbach B, Vogt S (2021). Multiple mechanisms regulate eukaryotic cytochrome C oxidase. Cells 10:514. https://doi.org/10.3390/cells10030514

Rao MP, Sathishkumar P, Mangalaraja RV, Asiri AM, Sivashanmugam P, Anandan S (2018). Simple and low-cost synthesis of CuO nanosheets for visible-light-driven photocatalytic degradation of textile dyes. Journal of Environmental Chemical Engineering 6:2003-2010. https://doi.org/10.1016/j.jece.2018.03.008

Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S (2017). Impact of metal and metal oxide nanoparticles on plant: a critical review. Frontiers in Chemistry 5:78. https://doi.org/10.3389/fchem.2017.00078

Ruddaraju LK, Pammi SVN, sankar Guntuku G, Padavala VS, Kolapalli VRM (2020). A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian Journal of Pharmaceutical Sciences 15:42-59. https://doi.org/10.1016/j.ajps.2019.03.002

Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017). Nanoparticles based on essential metals and their phytotoxicity. Journal of Nanobiotechnology 15:33-39. https://doi.org/10.1186/s12951-017-0268-3

Salas-Pérez L, Gaucín-Delgado JM, Preciado-Rangel P, Fortis-Hernández M, Valenzuela-García JR, Ayala-Garay AV (2016). Efecto del ácido benzoico en la capacidad antioxidante de germinados de trigo. Revista Mexicana de Ciencias Agrícolas 17:3397-3404.

Santos Filho Rd, Vicari T, Santos SA, Felisbino K, Mattoso N, Sant’Anna-Santos BF (2019). Genotoxicity of titanium dioxide nanoparticles and triggering of defense mechanisms in Allium cepa. Genetics Molecular Biology 42:425-435. https://doi.org/10.1590/1678-4685-GMB-2018-0205

Sathiyabama M, Manikandan A (2018). Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger millet (Eleusine coracana Gaertn.) plants against blast disease. Journal of Agricultural Food Chemistry 66:1784-1790. https://doi.org/10.1021/acs.jafc.7b05921

Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S (2020). Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 259:127436. https://doi.org/10.1016/j.chemosphere.2020.127436

Shin, LJ, Lo, JC y Yeh, KC (2012). Copper chaperone antioxidant protein1 is essential for copper homeostasis. Plant Physiology 159:1099-1110. https://doi.org/10.1104/pp.112.195974

Siddiqi KS, Husen A (2020). Current status of the manufacture of copper / copper oxide nanoparticles based on plant metabolites and their applications: a review. Biomaterials Research 24:11-16. https://doi.org/10.1186/s40824-020-00188-1

Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar PJJon (2018). ‘Green’synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Tropical Plant Research 16:84-75. https://doi.org/10.1186/s12951-018-0408-4

Singleton VL, Orthofer R, Lamuela-Raventós RM (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Elsevier 1:152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

Sun-Kou MdR, Obregón-Valencia D, Pinedo-Flores Á, Paredes-Doig AL, Aylas-Orejón J (2014). Adsorción de metales pesados empleando carbones activados preparados a partir de semillas de aguaje. Revista de la Sociedad Química del Perú 80:225-236.

Tadjarodi A, Akhavan O, Bijanzad K (2015). Photocatalytic activity of CuO nanoparticles incorporated in mesoporous structure prepared from bis (2-aminonicotinato) copper (II) microflakes. Transactions of Nonferrous Metals Society of China 25:3634-3642. https://doi.org/10.1016/S1003-6326(15)64004-3

Taghavi FS, Ramazani A, Asiabi P, Joo S (2018). A novel green synthesis of copper oxide nanoparticles using a Henna extract powder. Journal of Structural Chemistry 59:1796-1801. https://doi.org/10.1134/S0022476618070302.

Trang NTH, Dung PD, Van PTH, Thang PQ (2018). Green synthesis of copper nanoparticles using mandarin (Citrus reticulata) peel extract and antifungal study. Asian Journal of Biotechnology and Bioresource Technology 3:1-9. https://doi.org/10.9734 / AJB2T / 2018/39126

Van den Bruinhorst A, Kouris P, Timmer J, de Croon M, Kroon M (2016). Exploring orange peel treatment with deep eutectic solvents and diluted organic acids. Natural Products Chemistry Research 4:1-5. https://doi.org/10.4172/2329-6836.1000242

Vijilvani C, Bindhu MR, Frincy FC, AlSalhi MS, Sabitha S, Saravanakumar K, … Atif M (2020). Antimicrobial and catalytic activities of biosynthesized gold, silver and palladium nanoparticles from Solanum nigurum leaves. Journal of Photochemistry and Photobiology B: Biology 202:111713. https://doi.org/10.1016/j.jphotobiol.2019.111713

Wei Y, Fang Z, Zheng L, Tan L, Tsang EP (2016). Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts. Materials Letters 185:384-386. https://doi.org/10.1016/j.matlet.2016.09.029

Wojtkowiak K, Stępień A (2015). Nutritive value of spelt (Triticum aestivum spp. spelta L.) as influenced by the foliar application of copper, zinc and manganese. Zemdirbyste-Agriculture 102:389-396. https://doi.org/10.13080/z-a.2015.102.049

Xiong T, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M (2017). Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environmental Science 51:5242-5251. https://doi.org/10.1021/acs.est.6b05546

Xu W, Xiang P, Liu X, Ma LQJC (2020). Closely-related species of hyperaccumulating plants and their ability in accumulation of As, Cd, Cu, Mn, Ni, Pb and Zn. Quimiosfera 34:126334. https://doi.org/10.1016/j.chemosphere.2020.126334

Younes N, Hassan HS, Elkady MF, Hamed A, Dawood MF (2020). Impact of synthesized metal oxide nanomaterials on seedlings production of three Solanaceae crops. Heliyon 6:e03188. https://doi.org/10.1016/j.heliyon.2020.e03188

Published
2022-03-15
How to Cite
ORTEGA-ORTIZ, H., GAUCIN-DELGADO, J. M., PRECIADO-RANGEL, P., FORTIS HERNANDEZ, M., HERNANDEZ-MONTIEL, L. G., CRUZ-LAZARO, E. D. L., & LARA-CAPISTRÁN, L. (2022). Copper oxide nanoparticles biosynthetized improve germination and bioactive compounds in wheat sprouts. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12657. https://doi.org/10.15835/nbha50112657
Section
Research Articles
CITATION
DOI: 10.15835/nbha50112657