Grain yield, nutritional, polyphenols and antioxidant capacity in accessions of sorghum (Sorghum bicolor L. Moench)

  • Silvia UÑATE-FRAGA Universidad Autónoma Agraria Antonio Narro, Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Saltillo C.P. 25315, Coahuila (MX)
  • Josué I. GARCÍA-LÓPEZ Universidad Autónoma Agraria Antonio Narro, Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Saltillo C.P. 25315, Coahuila (MX)
  • Antonio FLORES-NAVEDA Universidad Autónoma Agraria Antonio Narro, Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Saltillo C.P. 25315, Coahuila (MX)
  • Norma RUIZ-TORRES Universidad Autónoma Agraria Antonio Narro, Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Saltillo C.P. 25315, Coahuila (MX)
  • Sonia RAMÍREZ-BARRÓN Universidad Autónoma Agraria Antonio Narro, Departamento de Ciencias Básicas, Laboratorio de Biotecnologia y Biologia Molecular, Saltillo C.P. 25315, Coahuila (MX)
  • Agustín HERNÁNDEZ-JUÁREZ Universidad Autónoma Agraria Antonio Narro, Departamento de Parasitología, Saltillo C.P. 25315, Coahuila (MX)
  • Alejandro LOZANO-DEL RÍO Universidad Autónoma Agraria Antonio Narro, Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Saltillo C.P. 25315, Coahuila (MX)
  • Julio C. TAFOLLA-ARELLANO Universidad Autónoma Agraria Antonio Narro, Departamento de Ciencias Básicas, Laboratorio de Biotecnologia y Biologia Molecular, Saltillo C.P. 25315, Coahuila (MX)
Keywords: antioxidant capacity, correlation, phenolic compounds, sorghum grain, yield

Abstract

Sorghum is an economically important crop in developing countries. The objective of this study was to compare the agronomic performance, and the chromatic, nutritional and nutraceutical properties of nineteen sorghum accessions cultivated in Tamaulipas, Mexico. Results showed that the grain yield (15.22 to 70.18 g per plant), days to flowering (73 to 92 days), panicle length (16.63 to 27.67 cm), luminosity (27.14 to 57.75), chromaticity (5.65 to 15.33) and hue angle (38.49 to 82.66) varied. The percentage of protein (7.33 to 3.43%), fiber (0.60 to 3.03%) and carbohydrates (70.17 to 78.39%) also varied. Grains had a high concentration of magnesium, phosphorus and potassium; the content of total phenols and total flavonoids (free + bound) was found in a range of 117.61 to 2367.01 mg GAE/100 g and 22.52 to 613.92 mg CE/100 g, respectively. The antioxidant capacities (free + bound) showed ranges from 65.09 to 2,017.58 μmol TE/100 g, 43.13 to 1,907.99 μmol TE/100 g and 107.20 to 3,523.20 μmol TE/100 g using the ABTS, DPPH and FRAP methods, respectively. A negative correlation (-0.36) was observed between grain yield and days to flowering. In addition, a positive correlation between phenolic compounds and antioxidant capacity. These results confirm an important genetic diversity among the studied accessions of sorghum.

Metrics

Metrics Loading ...

References

Abah CR, Ishiwu CN, Obiegbuna JE, Oladejo AA (2020). Sorghum grains: nutritional composition, functional properties and its food applications. European Journal of Nutrition and Food Safety 12(5):101-111. https://doi.org/10.9734/ejnfs/2020/v12i530232

Afify AEMM, El-Beltagi HS, Abd El-Salam SM, Omran AA (2015). Effect of soaking, cooking, germination and fermentation processing on physical properties and sensory evaluation of sorghum biscuits. Notulae Scientia Biologicae 7(1):129-135. https://doi.org/10.15835/nsb.7.1.9428

Alcántar GG, Sandoval VM (1999). Handbook chemical analysis of vegetal tissue. Especial Publication (10). Mexican Society of Soil Science. Estado de México, México.

Alejandro Allende F, García Mata R, García Sánchez RC, Mora Flores JS, Sangerman-Jarquín DM (2020). Competitividad de la producción de sorgo en el norte de Tamaulipas, México [Competitiveness of sorghum production in northern Tamaulipas, Mexico]. Revista Mexicana de Ciencias Agrícolas 11(1):139-150. https://doi.org/10.29312/remexca.v11i1.1914

Appiah-Nkansah NB, Zhang K, Rooney W, Wang D (2018). Ethanol production from mixtures of sweet sorghum juice and sorghum starch using very high gravity fermentation with urea supplementation. Industrial Crops and Products 111:247-253. https://doi.org/10.1016/j.indcrop.2017.10.02

Aruna CR, Ratnavathi CV, Suguna M, Ranga B, Praveen Kumar P, Annapurna A, … Toapi VA (2019). Genetic variability and GxE interactions for total polyphenol content and antioxidant activity in white and red sorghums (Sorghum bicolor). Plant Breeding 139(1):119-130. https://doi.org/10.1111/pbr.12756

Association of Official Analytical Chemist (AOAC) (1998). Official Methods of Analysis of AOAC International, 16th ed. AOAC: Maryland, USA.

Batista PSC, Carvalho AJ, Portugal AF, Bastos EA, Cardoso MJ, Torres LG, … de Menezes CB (2019). Selection of sorghum for drought tolerance in a semiarid environment. Genetics and Molecular Research 18(1):1-11. http://dxdoi.org/10.4238/gmr18194

Belay F, Meresa H (2017). Performance evaluation of sorghum (Sorghum bicolor (L.) Moench) hybrids in the moisture stress conditions of Abergelle District, Northern Ethiopia. Journal of Cereals and Oilseeds 8(4):26-32. https://doi.org/10.5897/JCO2016.0168

Bird AR, Regina A (2018). High amylose wheat: A platform for delivering human health benefits. Journal of Cereal Science 82:99-105. https://doi.org/10.1016/j.jcs.2018.05.011

Bremner JM (1965). Total nitrogen. In: Norman. Methods for Soil Analysis. Madison, Wisconsin, USA, pp 1149-1178.

Camposeco-Montejo N, Flores-Naveda A, Ruiz-Torres N, Álvarez-Vázquez P, Niño-Medina G, Ruelas-Chacón X, García-López JI (2021). Agronomic performance, capsaicinoids, polyphenols and antioxidant capacity in genotypes of habanero pepper grown in the southeast of Coahuila, Mexico. Horticulturae 7(10):372. https://doi.org/10.3390/horticulturae7100372

ColorHexa (2020). Color Encyclopedia: Information and Conversion. Computer Software. Retrieved 2020 July 13 from https://www.colorhexa.com/index.php

Commission Internationale De L’ecleirage (CIE) Cie 15 (2004). Technical Report: Colorimetry, 3rd ed. Vienna, Austria, pp 7.

de Oliveira KG, Queiroz VAV, de Almeida CL, de Morais Cardoso L, Pinheiro-Sant’Ana HM, Anunciação PC, Barros F (2017). Effect of the storage time and temperature on phenolic compounds of sorghum grain and flour. Food Chemistry 216:390-398. https://doi.org/10.1016/j.foodchem.2016.08.047

de Souza AA, de Carvalho AJ, Bastos EA, Cardoso MJ, Júlio MPM, Cardoso MJ, … de Oliveira SM (2021). Grain sorghum under pre-and post-flowering drought stress in a semiarid environment. Australian Journal of Crop Science 15(08):1139-1145. https://doi.org/10.21475/ajcs.21.15.08.p3162

Dia VP, Pangloli P, Jones L, McClure A, Patel A (2016). Phytochemical concentrations and biological activities of Sorghum bicolor alcoholic extracts. Food & Function 7(8):3410-3420. https://doi.org10.1039/c6fo00757k

dos Santos CV, Silva NS, Magalhães JV, Schaffert RE, de Menezes CB (2018). Performance of grain sorghum hybrids in soils with low and high aluminum saturation. Pesquisa Agropecuária Tropical 48(1):12. https://doi.org/10.1590/1983-40632018v4848851

Eggleston G, Boue S, Bett‐Garber K, Verret C, Triplett A, Bechtel P (2020). Phenolic contents, antioxidant potential and associated colour in sweet sorghum syrups compared to other commercial syrup sweeteners. Journal of the Science of Food and Agriculture 101(2):341-804. https://doi.org10.1002/jsfa.10673

Elnasikh MH, Ahmed MI, Abuali AI, Ahmed NM, Ahmed BI, Babiker AE, Hassan AB (2020). Protein content, in-vitro protein digestibility (IVPD), anti-nutritional factor and mineral content and bioavailability of sixteen sweet sorghum (Sorghum bicolor (L.) Moench) grain genotypes grown in Sudan. Journal of the Saudi Society for Food and Nutrition 13(1):33-45.

Emendack Y, Sanchez J, Hayes C, Nesbitt M, Laza H, Burke J (2021). Seed to seed early season cold resiliency in sorghum. Scientific reports 11(1):1-12. https://doi.org/10.1038/s41598-021-87450-1

Espitia-Hernández P, Chávez González ML, Ascacio Valdés JA, Dávila-Medina D, Flores-Nevada A, Teresinha S, … Sepúlveda L (2020). Sorghum (Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties. Critical Reviews in Food Science and Nutrition 1-12. https://doi.org/10. 1080/10408398.2020.1852389

FAOSTAT (2020). Food and Agriculture Organization statistical database. Retrieved 2020 August 12 http://www.fao.org/faostat/en/#data

Farida K, Messaoud B, Bernard W, Salah A (2020). Antimicrobial activity of aqueous methanolic extracts of Algerian cultivars of sorghum (Sorghum bicolor (L.) Moench). Acta Scientifica Naturalis 7(1):71-85. https://doi.org/10.2478/asn-2020-0008

Flores-Naveda A, Díaz-Vázquez F, Ruiz-Torres NA, Vázquez-Badillo ME, Niño-Medina G, Camposeco-Montejo N, … García-López JI (2021). Compuestos fenólicos y actividad antioxidante en líneas experimentales de sorgo pigmentado cultivado en Coahuila México [Phenolic compounds and antioxidant activity in experimental lines of pigmented sorghum grown in Coahuila Mexico]. ITEA-Información Técnica Económica Agraria 117(5):478-493. https://doi.org/10.12706/itea.2021.011

Galassi E, Taddei F, Ciccoritti R, Nocente F, Gazza L (2019). Biochemical and technological characterization of two C4 gluten‐free cereals: Sorghum bicolor and Eragrostis tef. Cereal Chemistry 97(1):65-73. https://doi.org/10.1002/cche.10217

Galicia-Juárez M, Sinagawa-García S, Gutiérrez-Diez A, Williams-Alanís H, Zavala-García F (2020). Termotolerancia en líneas de sorgo (Sorghum bicolor (L.) Moench) para grano [Thermotolerance in sorghum lines [Sorghum bicolor (L.) Moench] for grain]. Revista Mexicana de Ciencias Agrícolas 11(1):221-227. https://doi.org/10.29312/remexca.v11i1.1945

Gely MC, Pagano AM (2017). Effect of moisture content on engineering properties of sorghum grains. Agricultural Engineering International: CIGR Journal 19(2):200-209.

Ghimire BK, Seo JW, Yu CY, Kim SH, Chung IM (2021). Comparative study on seed characteristics, antioxidant activity, and total phenolic and flavonoid contents in accessions of Sorghum bicolor (L.) Moench. Molecules 26(13):3964. https://doi.org/10.3390/molecules26133964

Guimarães MJ, Simões WL, Oliveira ARD, de Araujo GG, Silva ÊFDF, Willadino LG (2019). Biometrics and grain yield of sorghum varieties irrigated with salt water. Revista Brasileira de Engenharia Agrícola e Ambiental 23:285-290. https://doi.org/10.1590/1807-1929/agriambi.v23n4p285-290

Hou F, Su D, Xu J, Gong Y, Zhang R, Wei Z, Chi J, Zhang M (2016). Enhanced extraction of phenolics and antioxidant capacity from sorghum (Sorghum bicolor (L.) Moench) shell using ultrasonic-assisted ethanol-water binary solvent. Journal of Food Processing and Preservation 40(6):1171-1179. https://doi.org/10.1111/jfpp.12699

Ishikawa S, Tsukamoto T, Kato H, Shigeta K, Yakushido KI (2017). Agronomic factors affecting the potential of sorghum as a feedstock for bioethanol production in the Kanto region, Japan. Sustainability 9(6):937. https://doi.org/10.3390/su9060937

Isticioaia SF, Mirzan O, Popa D, Naie M, Vladut V, Voicea I (2018). The chemical composition of some sorghum genotipes for grains cultivated in the center of Moldova. Journal of Engineering Studies and Research 24(4):28-31. https://doi.org/10.29081/jesr.v24i4.45

Itagi C, Hemalatha S (2017). Variability in grain physico-chemical composition in different sorghum (Sorghum bicolor (L.) Moench) genotypes. International Journal of Current Microbiology and Applied Sciences 6(7):2610-2618. https://doi.org/10.20546/ijcmas.2017.607368

Jabereldar AA, El Naim AM, Abdalla AA, Dagash YM (2017). Effect of water stress on yield and water use efficiency of sorghum (Sorghum bicolor (L.) Moench) in semi-arid environment. International Journal of Agriculture and Forestry 7(1):1-6. https://doi.org10.5923/j.ijaf.20170701.01

Kanbar A, Flubacher N, Hermuth J, Kosová K, Horn T, Nick P (2021). Mining sorghum biodiversity-potential of dual-purpose hybrids for bio-economy. Diversity 13(5):192. https://doi.org/10.3390/d13050192

Kaplan M (2019). Assessment of grain minerals of Turkish sorghum (Sorghum bicolor (L.)) landraces by GT biplot analysis. Quality Assurance and Safety of Crops & Foods 11(5):441-447. https://doi.org10.3920/QAS2018.1393

Kaufman RC, Wilson JD, Bean SR, Galant AL, Perumal RR, Tesso T, Shi Y-C (2018). Influence of genotype × location interaction on grain sorghum grain chemistry and digestibility. Agronomy Journal 110(5):1681-1688. https://doi.org/10.2134/agronj2017.09.0561

Kazemi E, Ganjali HR, Mehraban A, Ghasemi A (2021). Yield and biochemical properties of grain sorghum (Sorghum bicolor (L.) Moench) affected by nano-fertilizer under field drought stress. Cereal Research Communications 45:1-9. https://doi.org/10.1007/s42976-021-00198-2

Keyata EO, Tola YB, Bultosa G, Forsido SF (2021). Premilling treatments effects on nutritional composition, antinutritional factors, and in vitro mineral bioavailability of the improved Assosa I sorghum variety (Sorghum bicolor (L.)). Food Science & Nutrition 9(4):1929-1938. https://doi.org/10.1002/fsn3.2155

Khan I, Yousif AM, Johnson SK, Gamlath S (2015). Acute effect of sorghum flour-containing pasta on plasma total polyphenols, antioxidant capacity and oxidative stress markers in healthy subjects: A randomised controlled trial. Clinical Nutrition 34(3):415-421. https://doi.org/10.1016/j.clnu.2014.08.005

Khoddami A, Mohammadrezaei M, Roberts TH (2017). Effects of sorghum malting on colour, major classes of phenolics and individual anthocyanins. Molecules 22(10):1713. https://doi.org/10.3390/molecules22101713

Kimani W, Zhang LM, Wu XY, Hao HQ, Jing HC (2020). Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). BMC Genomics 21(1):112. https://doi.org/10.1186/s12864-020-6538-8

Li Y, Mao P, Zhang W, Wang X, You Y, Zhao H, Liu G (2015). Dynamic expression of the nutritive values in forage sorghum populations associated with white, green and brown midrid genotypes. Field Crops Research 184:112-122. https://doi.org/10.1016/j.fcr.2015.09.008

Lopez-Contreras JJ, Zavala-Garcia F, Urias-Orona V, Martinez-Avila GCG, Rojas R, Guillermo NM (2015). Chromatic, phenolic and antioxidant properties of Sorghum bicolor genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 43(2):366-370. https://doi.org/10.15835/nbha4329949

Lyu JI, Ryu J, Kim DG, Kim JM, Lee MK, Kim JB, Kwon SJ (2019). Characterization of agronomic traits and composition of antioxidant compounds in sweet sorghum (Sorghum bicolor (L.) Moench) germplasms. Plant Breeding and Biotechnology 7(2):132-140. https://doi.org/10.9787/PBB.2019.7.2.132

Makino Y, Ueno O (2018). Structural and physiological responses of the C4 grass Sorghum bicolor to nitrogen limitation. Ciencias de la Producción Vegetal 21(1):39-50. https://doi.org/10.1080/1343943X.2018.1432290

Martínez JDL, Salas-Pérez L, Soto RV, García VJB, Preciado RP, Ramírez SAR (2017). Efecto del potasio en el contenido fenólico y capacidad antioxidante de Ocimum basilicum (L.) [Effect of potassium on the phenolic content and antioxidant capacity of Ocimum basilicum (L.)]. Revista Mexicana de Ciencias Agrícolas 8(1):133-145. https://doi.org/10.29312/remexca.v8i1.77

Martínez Medina SDJ, Gómez-Kosky R, Rodríguez Valdés G, Veitia Rodríguez N, Saucedo Castillo O, Gil Díaz V (2016). Caracterización morfoagronómica de plantas de sorgo granífero variedad CIAP 132R-05 regeneradas vía embriogénesis somática en condiciones de campo [Morph agronomic characterization of grain sorghum variety CIAP 132R-05 plants regenerated via somatic embryogenesis under field conditions]. Centro Agrícola 43(3):73-79.

Menezes CB de, Silva KJ da, Teodoro LPR, Santos CV dos, Julio BHM, Portugal AF, Teodoro PE (2021). Grain sorghum hybrids under drought stress and full‐irrigation conditions in the Brazilian Semiarid. Journal of Agronomy and Crop Science 00:1-8. https://doi.org/10.1111/jac.12539

Mengistu G, Shimelis H, Laing M, Lule D, Mathew I (2020). Genetic variability among Ethiopian sorghum landrace accessions for major agro-morphological traits and anthracnose resistance. Euphytica 216(7):1-15. https://doi.org/10.1007/s10681-020-02650-6

Mohamed HI, Latif HH, Hanafy RS (2016). Influence of nitric oxide application on some biochemical aspects, endogenous hormones, minerals and phenolic compounds of vicia faba plant grown under arsenic stress. Gesunde Pflanzen 68(2):99-107. https://doi.org/10.1007/s10343-016-0363-7

Mohapatra D, Patel AS, Kar A, Deshpande SS, Tripathi MK (2019). Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food chemistry 271:129-135. https://doi.org/10.1016/j.foodchem.2018.07.196

Mohapatra D, Patel AS, Kar A, Deshpande SS, Tripathi MK (2021). Effect of different processing conditions on essential minerals and heavy metal composition of sorghum grain. Journal of Food Processing and Preservation 45(1):14909. https://doi.org/10.1111/jfpp.14909

Mwamahonje A, Eleblu JSY, Ofori K, Feyissa T, Deshpande S, Tongoona P (2021). Evaluation of traits’ performance contributing to drought tolerance in sorghum. Agronomy 11(9):1698. https://doi.org/10.3390/agronomy11091698

Naoura G, Emendack Y, Baloua N, Vom Brocke K, Hassan MA, Sawadogo N, Laza HE (2020). Characterization of semi-arid Chadian sweet sorghum accessions as potential sources for sugar and ethanol production. Scientific Reports 10(1):1-11. https://doi.org/10.1038/s41598-020-71506-9

Oliveira S, Costa KA, Severiano E, da Silva A, Dias M, Oliveira G, Costa JV (2020). Performance of grain sorghum and forage of the genus brachiaria in integrated agricultural production systems. Agronomy 10(11):1714. https://doi.org/10.3390/agronomy10111714

Ortiz-Cruz RA, Ramírez-Wong B, Ledesma-Osuna AI, Torres-Chávez PI, Sánchez-Machado DI, Montaño-Leyva B, Gutiérrez-Dorado R (2020). Effect of extrusion processing conditions on the phenolic compound content and antioxidant capacity of sorghum (Sorghum bicolor (L.) Moench) bran. Plant Foods for Human Nutrition 75(2):252-257. https://doi.org/10.1007/s11130-020-00810-6

Paiva CL, Queiroz VAV, Simeone MLF, Schaffert RE, de Oliveira AC, da Silva CS (2017). Mineral content of sorghum genotypes and the influence of water stress. Food Chemistry 214:400-405. https://doi.org/10.1016/j.foodchem.2016.07.067

Patekar S, Moreand D, Hashmi S (2017). Studies on physico-chemical properties and minerals content from different sorghum genotypes. Journal of Pharmacognosy and Phytochemistry 6(5):600-604. https://doi.org/10.1007/s11104-020-04483-7

Pontieri P, Mamone G, De Caro S, Tuinstra M, Roemer E, Okot J, … Del Giudice L (2013). Sorghum, a healthy and gluten-free food for celiac patients as demonstrated by genome, biochemical, and immunochemical analyses. Journal of Agricultural and Food Chemistry 61:2565-2571. https://doi.org/10.1021/jf304882k

Punia H, Tokas J, Malik A, Satpal Y, Sangwan S (2021). Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Research Communications 49(3):343-353. https://doi.org/10.1007/s42976-020-00118-w

Rashwan AK, Yones HA, Karim N, Taha EM, Chen W (2021). Potential processing technologies for developing sorghum-based food products: An update and comprehensive review. Trends in Food Science & Technology 110:168-182. https://doi.org/10.1016/j.tifs.2021.01.087

Ratnavathi CV, Komala VV (2016). Sorghum grain quality. In Sorghum biochemistry: An Industrial Perspective. Hyderabad, India, pp 1-61. https://doi.org/10.1016/B978-0-12-803157-5.00001-0

Rebellato AP, Orlando EA, Thedoropoulos V, Greiner R, Pallone J (2020). Effect of phytase treatment of sorghum flour, an alternative for gluten free foods and bioaccessibility of essential minerals. Revista de Ciencia y Tecnología de los Alimentos 57(9):3474-3481. https://doi.org/10.1007/s13197-020-04382-w

Regassa TH, Wortmann CS (2014). Sweet sorghum as a bioenergy crop: literature review. Biomass and Bioenergy 64:348-355. https://doi.org/10.1016/j.biombioe.2014.03.052

Rhodes DH, Hoffmann L, Rooney WL, Herald TJ, Bean S, Boyles R, Brenton ZW, Kresovich S (2017). Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics 18:15. https://doi.org/10.1186/s12864-016-3403-x

Rodríguez-Salinas PA, Zavala-García F, Urías-Orona V, Muy-Rangel D, Heredia JB, Niño-Medina G (2020). Chromatic, nutritional and nutraceutical properties of pigmented native maize (Zea mays L.) genotypes from the northeast of Mexico. Arabian Journal for Science and Engineering 45:95-112. https://www.doi.org/10.1007/s13369- 019-04086-0

Rosanoff A, Kumssa DB (2020). Impact of rising body weight and cereal grain food processing on human magnesium nutrition. Plant & Soil 457:5-23. https://doi.org/10.1007/s11104-020-04483-7

Shahidi F, Ambigaipalan P (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects. Journal of Functional Foods 18:820-897. https://doi.org/10.1016/j.jff.2015.06.018

Shen S, Huang R, Li C, Wu W, Chen H, Shi J, Chen S, Ye X (2018). Phenolic compositions and antioxidant activities differ significantly among sorghum grains with different applications. Molecules 23:2-15. https://doi.org/10.3390/molecules23051203

Tasie MM, Gebreyes BG (2020). Characterization of nutritional, antinutritional, and mineral contents of thirty-five sorghum varieties grown in Ethiopia. International Journal of Food 2020:1-11. https://doi.org/10.1155/2020/8243617

USDA (2019). United States Department of Agriculture. Retrieved 2020 December 07 https://www.usda.gov/ topics/data

Van Hung P (2016). Phenolic compounds of cereals and their antioxidant capacity. Critical Reviews in Food Science and Nutrition 56(1):25-35. https://doi.org/10.1080/10408398.2012.708909

Wang S, Nosworthy MG, House JD, Niefer SH, Nickerson MT (2019). Effect of barrel temperature and feed moisture on protein quality in pre-cooked kabuli chickpea, sorghum, and maize flours. Food Science and Technology International 26(3):265-274. https://doi.org/10.1177/1082013219887635

Wang X, Hunt C, Cruickshank A, Mace E, Hammer G, Jordan D (2020). The impacts of flowering time and tillering on grain yield of sorghum hybrids across diverse environments. Agronomy 10(1):135. https://doi.org/10.3390/agronomy10010135

Wondimu Z, Bantte K, Paterson AH, Worku W (2020). Agro-morphological diversity of Ethiopian sorghum (Sorghum bicolor (L.) Moench) landraces under water limited environments. Genetic Resources and Crop Evolution 67:2149-2160. https://doi.org/10.1007/s10722-020-00968-7

Wu G, Johnson SK, Bornman JF, Bennett SJ, Fang Z (2017). Changes in whole grain polyphenols and antioxidant activity of six sorghum genotypes under different irrigation treatments. Food Chemistry 214:199-207. https://doi.org/10. 1016/j.foodchem.2016.07.089

Wu G, Shen Y, Qi Y, Zhang H, Wang L, Qian H, Johnson SK (2018). Improvement of in vitro and cellular antioxidant properties of Chinese steamed bread through sorghum addition. LWT - Food Science and Technology 91:77-83. https://doi.org/10.1016/j.lwt.2017.12.074

Xiong Y, Zhang P, Warner RD, Fang Z (2019). Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Comprehensive reviews in food science and food safety 18(6):2025-2046. https://doi.org/10.1111/1541-4337.12506

Younis M, Essa NM, Abdo SG (2019). Effect of dietary germinated sorghum on growth performance, carcass characteristics and some blood parameters of growing Japanese quails. Archives of Agriculture Sciences Journal 2(2):31-42. https://doi.org/10.21608/AASJ.2019.22043.1017

Published
2022-03-17
How to Cite
UÑATE-FRAGA, S., GARCÍA-LÓPEZ, J. I., FLORES-NAVEDA, A., RUIZ-TORRES, N., RAMÍREZ-BARRÓN, S., HERNÁNDEZ-JUÁREZ, A., LOZANO-DEL RÍO, A., & TAFOLLA-ARELLANO, J. C. (2022). Grain yield, nutritional, polyphenols and antioxidant capacity in accessions of sorghum (Sorghum bicolor L. Moench). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12637. https://doi.org/10.15835/nbha50112637
Section
Research Articles
CITATION
DOI: 10.15835/nbha50112637