Effect of arbuscular mycorrhizal fungus on the growth and polyphenol production of medicinal plants: Ehretia asperula and Solanum procumben

  • Cuong V. BUI Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi; Institute for Tropical Technology (ITT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi (VN)
  • Quang D. LE Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi; Institute for Tropical Technology (ITT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi (VN)
  • Anh T. K. VO Institute for Tropical Technology (ITT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi (VN)
  • Lam D. TRAN Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi; Institute for Tropical Technology (ITT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi (VN)
Keywords: arbuscular mycorrhizal fungi, medicinal plants, polyphenols, secondary metabolites


The study was conducted to evaluate the influence of arbuscular mycorrhizal fungus (Rhizophagus intradices) on growth and polyphenol production of the two important and popular medicinal plants in Vietnam: Ehretia asperula Zoll. & Mor. and Solanum procumbens Lour. The results showed a significant effect of the fungus on the growth of these two species with the growth indices such as height, weight and P content that were all higher than those of non-AM plants; although the indices of AM symbiosis in the plant roots were not as high as other plants in previous studies. The effect of AM fungus on polyphenol production was different between the two species. In E. asperula, the effect of AM fungi on polyphenol production was not significant; whereas in S. procumbens, AM symbiosis significantly increased polyphenol production in plant biomass, especially in roots. The different growth times of the two species might cause the different effects of AM fungus on polyphenol production.


Metrics Loading ...


Araim G, Saleem A, Arnason JT, Charest C (2009). Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. Journal of Agricultural and Food Chemistry 57(6):2255-2258. https://doi.org/10.1021/jf803173x

Aroca R, Porcel R, Ruiz‐Lozano JM (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist 173(4):808-816. https://doi.org/10.1111/j.1469-8137.2006.01961.x

Bednarek P (2012). Chemical warfare or modulators of defence responses–the function of secondary metabolites in plant immunity. Current Opinion in Plant Biology 15(4):407-414. https://doi.org/10.1016/j.pbi.2012.03.002

Buee M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000). The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Molecular Plant-Microbe Interactions 13(6):693-698. https://doi.org/10.1094/MPMI.2000.13.6.693

Bui VC, Franken P (2018). Acclimatization of Rhizophagus irregularis enhances Zn tolerance of the fungus and the mycorrhizal plant partner. Frontiers in Microbiology 9:3156. https://doi.org/10.3389/fmicb.2018.03156

Davis DR (2009). Declining fruit and vegetable nutrient composition: what is the evidence? HortScience 44(1):15-19. https://doi.org/10.21273/HORTSCI.44.1.15

De la Rosa-Mera CJ, Ferrera-Cerrato R, Alarcón A, de Jesús Sánchez-Colín M, Muñoz-Muñiz OD (2011). Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant and Soil 349(1):367-376. https://doi.org/10.1007/s11104-011-0883-y

Galindo-Castañeda T, Romero HM (2013). Mycorrhization in oil palm (Elaeis guineensis and E. oleifera x E. guineensis) in the pre-nursery stage. Agronomía Colombiana 31(1):95-102.

García-Garrido JM, Ocampo JA (2002). Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. Journal of experimental Botany 53(373):1377-1386. https://doi.org/10.1093/jexbot/53.373.1377

Giovannetti M, Sbrana C, Logi C (1994). Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytologist 127(4):703-709.

Hildebrandt U, Regvar M, Bothe H (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(1):139-146. https://doi.org/10.1111/j.1469-8137.1994.tb02973.x

Jurkiewicz A, Ryszka P, Anielska T, Waligórski P, Białońska D, Góralska K, … Turnau K (2010). Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants. Mycorrhiza 20(5):293-306. https://doi.org/10.1007/s00572-009-0280-z

Kapoor R, Giri B, Mukerji KG (2002a). Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in dill (Anethum graveolens L.) and carum (Trachyspermum ammi (Linn.) Sprague). World Journal of Microbiology and Biotechnology 18(5):459-463. https://doi.org/10.1023/A:1015522100497

Kapoor R, Giri B, Mukerji KG (2002b). Mycorrhization of coriander (Coriandrum sativum L) to enhance the concentration and quality of essential oil. Journal of the Science of Food and Agriculture 82(4):339-342. https://doi.org/10.1002/jsfa.1039

Khan AG, Kuek C, Chaudhry T, Khoo CS, Hayes WJ (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41(1-2):197-207. https://doi.org/10.1016/S0045-6535(99)00412-9

Kim DD, Nguyet VT, Anh HX, Trang NTT, Chuyen NH, Ha TTH, Dat NT (2019). Cytotoxic phenolic constituents from the leaves of Ehretia asperula. Bangladesh Journal of Pharmacology 14(4):196-197.

Li H, Ye Z, Chan W, Chen X, Wu F, Wu S, Wong MH (2011). Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions? Environmental Pollution 159(10):2537-2545. https://doi.org/10.1016/j.envpol.2011.06.017

Nagahashi G, Douds DD Jr. (2000). Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycological Research 104(12):1453-1464. https://doi.org/10.1017/S0953756200002860

Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Lössl A, Franz C, Novak J, Zitterl-Eglseer K (2010). Root solonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L. Planta Medica 76:393-398. https://doi.org/10.1055/s-0029-1186180

Nguyen TL, Pham TH, Huynh TTH (2017). Evaluating the systematic position of Ehretia asperula Zoll. & Moritzi based on ITS1, matK and trnL-trnF DNA sequences. Vietnam Journal of Science, Technology and Engineering 59(4):61-65. https://doi.org/10.31276/VJSTE.59(4).61

Nguyet VT, Dat NT, Ha TTH, Chuyen NH, Hang NT, Kim DD (2018). Evaluating cytotoxic effect of the extracted compounds from Ehretia asperula Zoll. & Mor. stem on several cancer cell lines. Academia Journal of Biology 40(2):145-152.

Piasecka A, Jedrzejczak‐Rey N, Bednarek P (2015). Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytologist 206(3):948-964. https://doi.org/10.1111/nph.13325

Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2006). PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Molecular Biology 60(3):389-404. https://doi.org/10.1007/s11103-005-4210-y

Redecker D, Raab P (2006). Phylogeny of the glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98(6):885-895. https://doi.org/10.1080/15572536.2006.11832618

Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, … Colla G (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae 196:91-108. https://doi.org/10.1016/j.scienta.2015.09.002

Schüßler A, Kluge M (2001). Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research. Fungal associations, Springer 151-161. https://doi.org/10.1007/978-3-662-07334-6_9

Smith FA, Smith SE (2011). What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant and Soil 348(1):63-79. https://doi.org/10.1007/s11104-011-0865-0

Smith SE, Jakobsen I, Grønlund M, Smith FA (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156(3):1050-1057. https://doi.org/10.1104/pp.111.174581

Smith SE, Read DJ (2010). Mycorrhizal symbiosis. Academic press.

Tian B, Pei Y, Huang W, Ding J, Siemann E (2021). Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. The ISME Journal 1-12. https://doi.org/10.1038/s41396-021-00894-1

Toussaint JP, Smith F, Smith S (2007). Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17(4):291-297. https://doi.org/10.1007/s00572-006-0104-3

Tran TTT, Dang HP, Nguyen TN (2019). Chemical constituents from methanolic extract of Solanum procumbens Lour (Solanaceae). Vietnam Journal of Science, Technology and Engineering 61(3):9-11. https://doi.org/10.31276/VJSTE.61(3).09-11

Trouvelot A, Kough J, Gianinazzi-Pearson V (1986). Estimation of vesicular arbuscular mycorrhizal infection levels. Research for methods having a functional significance. Physiological and genetical aspects of mycorrhizae. Aspects physiologiques et genetiques des mycorhizes: proceedings of the 1st European Symposium on Mycorrhizae, Dijon, 1-5 July 1985, Paris: Institut National de le Recherche Agronomique, c1986.

Turnau K, Jurkiewicz A, Lingua G, Barea J, Gianinazzi-Pearson V (2005). Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal-polluted sites. Trace elements in the environment. Biogeochemistry, biotechnology, and bioremediation. CRC Taylor & Francis, Boca Raton, London, New York, pp 235-252.

Zhao J, Deng H, He X (2009). Effects of AM fungi on the quality of trueborn Angelica dahurica from Hebei province. Acta Agriculturae Boreali-Sinica 24:299-302.

Zubek, S., Mielcarek S, Turnau K (2012). Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22(2):149-156. https://doi.org/10.1007/s00572-011-0391-1

How to Cite
BUI, C. V., LE, Q. D., VO, A. T. K., & TRAN, L. D. (2022). Effect of arbuscular mycorrhizal fungus on the growth and polyphenol production of medicinal plants: Ehretia asperula and Solanum procumben. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12609. https://doi.org/10.15835/nbha50112609
Research Articles
DOI: 10.15835/nbha50112609