Comparative analysis of genetic diversity in Norway spruce (Picea abies) clonal seed orchards and seed stands

  • Elena CIOCÎRLAN Transilvania University of Brașov, Faculty of Silviculture and Forest Engineering, Eroilor nr.29, Brasov (RO)
  • Neculae ȘOFLETEA Transilvania University of Brașov, Faculty of Silviculture and Forest Engineering, Eroilor nr.29, Brasov (RO)
  • Georgeta MIHAI National Institute for Research and Development in Forestry “Marin Dracea”, Romania, Bulevardul Eroilor 128, Voluntari (RO)
  • Maria TEODOSIU National Institute for Research and Development in Forestry “Marin Dracea”, Romania, Bulevardul Eroilor 128, Voluntari (RO)
  • Alexandru L. CURTU Transilvania University of Brașov, Faculty of Silviculture and Forest Engineering, Eroilor nr.29, Brasov (RO)
Keywords: genetic diversity, microsatellite, Norway spruce, seed orchards, seed stands

Abstract

Norway spruce, Picea abies (L.) Karst. is the most important conifer species in Romania and the most planted tree species in the Carpathian Mountains. Here we compare the genetic diversity of four Norway spruce clonal seed orchards and two seed stands located in the Eastern Carpathians. A set of highly polymorphic nuclear microsatellite markers was used. The analysis of genotypic identity of ramets for each Norway spruce clone in all seed orchards indicated that nearly all sampled ramets (97%) were genetically identical. The genetic diversity in seed orchards (He=0.700) was slightly smaller compared to the seed stands (He=0.718). Allelic richness was higher in seed stands (10.874), compared to clonal seed orchards (8.941). The Bayesian analysis indicated a genetic structure with two clusters, one corresponding to the clonal seed orchards and a second one consisting of the two seed stands. Our results provide valuable information for the management of Norway spruce seed orchards in Romania.

Metrics

Metrics Loading ...

References

Bergmann F, Ruetz W (1991). Isozyme genetic variation and heterozygosity in random tree samples and selected orchard clones from the same Norway spruce populations. Forest Ecology and Management 46:39-47. https://doi.org/10.1016/0378-1127(91)90243-O

Budeanu M, Apostol EN, Popescu F, Postolache D, Ioniţă L (2019). Testing of the narrow-crowned Norway spruce ideotype (Picea abies f. pendula) and the hybrids with normal crown form (pyramidalis) in multisite comparative trials. Science of the Total Environment 689:980-990. https://doi.org/10.1016/j.scitotenv.2019.06.518

Chaisurisri K, El-Kassaby YA (1994). Genetic diversity in a seed production population vs. natural populations of Sitka spruce. Biodiversity and Conservation 3:512-523. https://doi.org/10.1007/BF00115157

Chaloupková K, Stejskal J, El-Kassaby YA, Frampton J, Lstibůrek M (2019). Current advances in seed orchard layouts: two case studies in conifers. Forests 10:93. https://doi.org/10.3390/F10020093

Curtu AL, Sofletea N, Radu R, Bacea A, Abrudan IV, Butiuc-Keul A, Farcas S (2009). Allozyme variation of coniferous tree species from Maramures Mountains, Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37:245-251. https://doi.org/10.15835/NBHA3723250

Doyle J, Doyle J (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11-15.

Dumolin S, Demesure B, Petit RJ (1995). Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics 91:1253-1256. https://doi.org/10.1007/BF00220937

Earl DA, vonHoldt BM (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4:359-361. https://doi.org/10.1007/S12686-011-9548-7/FIGURES/3

El-Kassaby YA (1992). Domestication and genetic diversity - should we be concerned? Forestry Chronicle 68:687-700. https://doi.org/10.5558/TFC68687-6

Ertekin M (2012). Genetic diversity of seed orchard crops. The Molecular Basis of Plant Genetic Diversity. https://doi.org/10.5772/33802

Evanno G, Regnaut S, Goudet J (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Excoffier L, Lischer HEL (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10:564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

Fluch S, Burg A, Kopecky D, Homolka A, Spiess N, Vendramin GG (2011). Characterization of variable EST SSR markers for Norway spruce (Picea abies L.). BMC Research Notes 4:1-6. https://doi.org/10.1186/1756-0500-4-401/TABLES/3

Foulley JL, Ollivier L (2006). Estimating allelic richness and its diversity. Livestock Science 101:150-158. https://doi.org/10.1016/j.livprodsci.2005.10.021

Funda T, El-Kassaby YA (2012). Seed orchard genetics. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 7. https://doi.org/10.1079/PAVSNNR20127013

Funda T, Lstibůrek M, Lachout P, Klápště J, El-Kassaby YA (2009). Optimization of combined genetic gain and diversity for collection and deployment of seed orchard crops. Tree Genetics and Genomes 5:583-593. https://doi.org/10.1007/S11295-009-0211-3

Geburek T (19970. Isozymes and DNA markers in gene conservation of forest trees. Biodiversity & Conservation 6:1639-1654. https://doi.org/10.1023/A:1018330906758

Goudet J (2001). FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. https://www.scienceopen.com/document?vid=79097bb4-ec3c-47c3-94a1-47085d721e6b

Hansen OK (2008). Mating patterns, genetic composition and diversity levels in two seed orchards with few clones-Impact on planting crop. Forest Ecology and Management 256:1167-1177. https://doi.org/10.1016/J.FORECO.2008.06.032

Ilinov AA, Raevsky BV (2017). Comparative evaluation of the genetic diversity of natural populations and clonal seed orchards of Pinus sylvestris L. and Picea × fennica (Regel) Kom. in Karelia. Russian Journal of Genetics: Applied Research 7:607-616. https://doi.org/10.1134/S2079059717060065

Jansen S, Konrad H, Geburek T (2017). The extent of historic translocation of Norway spruce forest reproductive material in Europe. Annals of Forest Science 74:1-17. https://doi.org/10.1007/S13595-017-0644-Z/FIGURES/4

Johnson R, Lipow S (2002). Compatibility of breeding for increased wood production and longterm sustainability: the genetic variation of seed orchard seed and associated risks. In: Proceedings Wood Compatibility Initiative Workshop 18:169-179.

Kang KS, Harju AM, Lindgren D, Nikkanen T, Almqvist C, Suh GU (2001). Variation in effective number of clones in seed orchards. New Forests 21:17-33. https://doi.org/10.1023/A:1010785222169

Langella O (1999). Populations 1.2.32. https://bioinformatics.org/populations/

Lindgren D, Prescher F (2005). Optimal clone number for seed orchards with tested clones. Silvae Genetica 54:80-92. https://doi.org/10.1515/SG-2005-0013

Máchová P, Trčková O, Cvrčková H (2018). Use of nuclear microsatellite loci for evaluating genetic diversity of selected populations of Picea abies (L.) Karsten in the Czech Republic. Forests 9:92. https://doi.org/10.3390/F9020092

Mihai G, Curtu AL, Garbacea P, Alexandru AM, Mirancea I, Teodosiu M (2019). Genetic variation and inheritance of bud flushing in a Norway spruce seed orchard established in Romania. Proceedings of the Biennial International Symposium “Forest and Sustainable Development” 25-27 October 2018, Brașov, Romania, pp 73-82. https://silvic.unitbv.ro/images/conferinte/fsd/proceedings/8.-Mihai-et-al.---ID-171.pdf

Mihai G, Teodosiu M, Birsan MV, Alexandru AM, Mirancea I, Apostol EN, Garbacea P, Ionita L (2020). Impact of climate change and adaptive genetic potential of Norway spruce at the south-eastern range of species distribution. Agricultural and Forest Meteorology 291:108040. https://doi.org/10.1016/J.AGRFORMET.2020.108040

Muona O, Harju A (1989). Effective population sizes, genetic variability, and mating system in natural stands and seed orchards of Pinus sylvestris. Silvae Genetica 38:221-228.

Namroud MC, Bousquet J, Doerksen T, Beaulieu J (2012). Scanning SNPs from a large set of expressed genes to assess the impact of artificial selection on the undomesticated genetic diversity of white spruce. Evolutionary Applications 5:641-656. https://doi.org/10.1111/J.1752-4571.2012.00242.X

Page RDM (2003). Visualizing phylogenetic trees using TreeView. Current Protocols in Bioinformatics 6.2.1-6.2.15. https://doi.org/10.1002/0471250953.bi0602s01

Parnuţa G, Stuparu E, Budeanu M, Scarlatescu V, Marica FM, Lala I, … Curtu AL (2012). Catalogul Naţional al materialelor de bază pentru producerea materialelor forestiere de reproducere din România. [The National Catalogue of Basic Materials for production of forest reproductive materials]. Editura Silvica, Bucureşti. http://www.mmediu.ro/beta/wp-content/uploads/2013/08/2013-08-30_Catalogul_National_pentru_PRODUCEREA_MATERIALELOR_FORESTIERE_de_REPRODUCERE.pdf

Peakall R, Smouse PE (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics (Oxford, England) 28:2537-2539. https://doi.org/10.1093/bioinformatics/bts460

Peakall R, Smouse PE (2006). Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6:288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

Pfeiffer A, Olivieri AM, Morgante M (1997). Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40:411-419. https://doi.org/10.1139/G97-055

Prescher F, Lindgren D, Almqvist C, Kroon J, Lestander TA, Mullin TJ (2007). Female fertility variation in mature Pinus sylvestris clonal seed orchards, Scandinavian Journal of Forest Research, 22:4, 280-289. https://doi.org/10.1080/02827580701419259

Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155:945-959. https://doi.org/10.1093/GENETICS/155.2.945

Radu GR, Curtu AL, Sparchez G, Sofletea N (2014). Genetic diversity of Norway spruce [Picea abies (L.) Karst.] in Romanian Carpathians. Annals of Forest Research 57:19-29. https://doi.org/10.15287/AFR.2014.178

Rungis D, Bérubé Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K (2004). Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theoretical and Applied Genetics 109:1283-1294. https://doi.org/10.1007/S00122-004-1742-5/FIGURES/4

Ruņgis D, Luguza S, Baders E, Šķipars V, Jansons A (2019). Comparison of genetic diversity in naturally regenerated Norway spruce stands and seed orchard progeny trials. Forests 10:926. https://doi.org/10.3390/f10100926

San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (2016). European atlas of forest tree species. Director. https://doi.org/10.2788/038466

Schiop ST, Al Hassan M, Sestras AF, Boscaiu M, Sestras RE, Vicente O (2017). Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees - Structure and Function 31:1479-1490. https://doi.org/10.1007/S00468-017-1563-1/FIGURES/7

Scotti I, Magni F, Paglia GP, Morgante M (2002). Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers. Theoretical and Applied Genetics 106:40-50. https://doi.org/10.1007/S00122-002-0986-1

Sønstebø JH, Tollefsrud MM, Myking T, Steffenrem A, Nilsen AE, Edvardsen M, Johnskås OR, El-Kassaby YA (2018). Genetic diversity of Norway spruce (Picea abies (L.) Karst.) seed orchard crops: Effects of number of parents, seed year, and pollen contamination. Forest Ecology and Management 411:132-141. https://doi.org/10.1016/J.FORECO.2018.01.009

Stoehr MU, El-Kassaby YA (1997). Levels of genetic diversity at different stages of the domestication cycle of interior spruce in British Columbia. TAG. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik 94:83-90. https://doi.org/10.1007/S001220050385

Tang DQ, Ide Y (2001). Genetic variation in fruitfulness in a Hinoki (Chamaecyparis obtusa Endl.) seed orchard and its impact on the maintenance of genetic diversity in seedlots. Journal of Forest Research 6:67-72. https://doi.org/10.1007/BF02762490

Teodosiu M (2011). Research regarding genetic variability in Norway spruce stands from Obcinele Bucovinei. Phd Dissertation, University Transilvania of Brasov. http://rs.unitbv.ro/teze/rezumate/2011/rom/Carpiuc_TeodosiuMaria.pdf

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004). Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4:535-538. https://doi.org/10.1111/J.1471-8286.2004.00684.X

Westergren M, Bozic G, Kraigher H (2018). Genetic diversity of core vs. peripheral Norway spruce native populations at a local scale in Slovenia. IForest - Biogeosciences and Forestry 11:104. https://doi.org/10.3832/IFOR2444-011

Williams Joseph H, Godt MJW, Hamrick JL, Edwards-Burke MA, Williams JH (2001). Comparisons of genetic diversity in white spruce (Picea glauca) and jack pine (Pinus banksiana) seed orchards with natural populations. Canadian Science Publishing 31:943-949. https://doi.org/10.1139/x01-024

Published
2021-12-20
How to Cite
CIOCÎRLAN, E., ȘOFLETEA, N., MIHAI, G., TEODOSIU, M., & CURTU, A. L. (2021). Comparative analysis of genetic diversity in Norway spruce (Picea abies) clonal seed orchards and seed stands. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(4), 12575. https://doi.org/10.15835/nbha49412575
Section
Research Articles
CITATION
DOI: 10.15835/nbha49412575