Analysis of codon usage pattern in Lonicera × heckrottii ‘Gold Flame’ based on chloroplast genome

  • Jiaqiang ZHANG Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, 311251 (CN)
  • Huichun LIU Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, 311251 (CN)
  • Wenting XU Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, 311251 (CN)
  • Kaiyuan ZHU Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, 311251 (CN)
Keywords: genetic code, influence factor, optimal codons, synonymous codon usage

Abstract

Codon usage bias (CUB) was a unique feature of the genome, and revealing chloroplast genome codon usage bias can provide useful information for the evolution of plant species. Lonicera × heckrottii ‘Gold Flame’ is one of the members of the Lonicera genus with important ornamental value. However, the codon usage bias of chloroplast genome of this genotype has not been investigated. In this study, base compositions and various codon usage indices of 51 coding sequences from Lonicera × heckrottii ‘Gold Flame’ chloroplast genome was calculated, by Codon W, DnaSP, CUSP of EMBOSS and SPSS software. A total of 51 CDS of the Lonicera × heckrottii ‘Gold Flame’ chloroplast genome was selected to analyse codon usage bias. The results showed that the average GC content of 51 CDS sequences was 39.27%, and the average value of ENC was 48.75%. The chloroplast gene codon usage bias was weak, and preferred A/T ending. The general GC content order was GC1 (47.72%)>GC2 (39.89%)>GC3 (30.19%). Correlation analysis results showed that there was a significant positive correlation between GC content and GC1, GC2 and GC3 content. Combined with neutral plot analysis, ENC-plot and PR2-plot analysis, it is found that chloroplast gene codon usage preference was affected by mutations pressure and natural selection. In addition, the eight optimal codons in chloroplast genome were finally identified, codon bias ending with A/T. The study on the codon usage bias of Lonicera × heckrottii ‘Gold Flame’ provides a demonstration for exploring its genetic structure and molecular evolution mechanism, and provides a reference for molecular breeding.

Metrics

Metrics Loading ...

References

Bergman S, Tuller T (2020). Widespread non-modular overlapping codes in the coding regions. Physical Biology 17(3):031002. http://doi.org/10.1088/1478-3975/ab7083

Bhattacharyya D, Uddin A, Das S, Chakraborty S (2019). Mutation pressure and natural selection on codon usage in chloroplast genes of two species in Pisum L. (Fabaceae: Faboideae). Mitochondrial DNA 30(4):664-673. http://doi.org/10.1080/24701394.2019.1616701

Bruner LL, Keever GJ, Kessler JR Gilliam CH (2002). Atrimmec suppresses shoot length and promotes branching of Lonicera × heckrottii ‘goldflame’ (goldflame honeysuckle). Journal of Environmental Horticulture 20(2):73-76. http://doi.org/10.24266/0738-2898-20.2.73

Bruner LL, Keever GJ, Kessler JR, Gilliam CH (2001). Shoot suppression of Lonicera × heckrottii ‘Goldflame’ (Goldflame honeysuckle) using growth retardants. Journal of Environmental Horticulture 19(4):203-206. http://doi.org/10.24266/0738-2898-19.4.203

Bulmer M (1991). The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897-907. http://doi.org/10.1093/genetics/129.3.897

Chakraborty S, Nag D, Mazumder TH, Uddin A (2017). Codon usage pattern and prediction of gene expression level in Bungarus species. Gene 604:48-60. http://doi.org/10.1016/j.gene.2016.11.023

Chakraborty S, Yengkhom S, Uddin DA (2020). Analysis of codon usage bias of chloroplast genes in Oryza species. Planta 252(4):67. http://doi.org/10.1007/s00425-020-03470-7

Chen SY, Zhang HX, Wang X, Zhang YH, Ruan GH, Ma J (2021). Analysis of codon usage bias in the chloroplast genome of Helianthus annuus J-01. IOP Conference Series: Earth and Environmental Science 792(1):012009. http://doi.org/10.1088/1755-1315/792/1/012009

Chi XF, Zhang FQ, Dong Q, Chen SL (2020). Insights into comparative genomics, codon usage bias, and phylogenetic relationship of species from Biebersteiniaceae and Nitrariaceae based on complete chloroplast genomes. Plants 9(11):1605. http://doi.org/10.3390/plants9111605

Deng N, Liu CX, Tian YX, Song Q, Niu YD, Ma FF (2020). Complete chloroplast genome sequences and codon usage pattern among three wetland plants. Agronomy Journal 13(2):840-851. http://doi.org/10.1002/agj2.20499

Dhindsa R, Copeland B, Mustoe A, Goldstein D (2020). Natural selection shapes codon usage in the human genome. American Journal of Human Genetics 107(1):83-95. http://doi.org/10.1016/j.ajhg.2020.05.011

Dilucca M, Pavlopoulou A, Georgakilas AG, Giansanti A (2020). Codon usage bias in radioresistant bacteria. Gene 742: 144554. http://doi.org/10.1016/j.gene.2020.144554

Dobrogojski J, Adamiec M, Luciński R (2020). The chloroplast genome: a review. Acta Physiologiae Plantarum 42(6). http://doi.org/10.1007/s11738-020-03089-x

Duan H, Zhang Q, Wang C, Li F, Tian F, Lu Y, Hu Y, Yang H, Cui G (2021). Analysis of codon usage patterns of the chloroplast genome in Delphinium grandiflorum L. reveals a preference for AT-ending codons as a result of major selection constraints. Peer J 9:e10787. http://doi.org/10.7717/peerj.10787

Eyre-Walker AC (1991). An analysis of codon usage in mammals, selection or mutation bias? Journal of Molecular Evolution 33:442-449. http://doi.org/10.1007/BF02103136

Galtier N, Roux C, Rousselle M, Romiguier J, Figuet E, Glémin S, Bierne N, Duret L (2018). Codon usage bias in animals: disentangling the effects of natural selection, effective population size, and GC-biased gene conversion. Molecular Biology and Evolution 35(5):1092-1103. http://doi.org/10.1093/molbev/msy015

Guo LL, Guo S, Xu J, He LX, Carlson JE, Hou XG (2020). Corrigendum to phylogenetic analysis based on chloroplast genome uncover evolutionary relationship of all the nine species and six cultivars of tree peony. Industrial Crops and Products 154: 112710. http://doi.org/10.1016/j.indcrop.2020.112567

Gupta SK, Bhattacharyya TK, Ghosh TC (2004). Synonymous codon usage in Lactococcus lactis, mutational bias versus translational selection. Journal of Biomolecular Structure and Dynamics 21:527-536. http://doi.org/10.1080/07391102.2004.10506946

Hershberg R, Petrov DA (2008). Selection on codon bias. Annual Review of Genetics 42(1):287-299. http://doi.org/10.1146/annurev.genet.42.110807.091442

Hu H, Liu J, An J, Wang M, Wang Q (2018). Characterization of the complete chloroplast genome of Lonicera macranthoides. Mitochondrial DNA Part B 3(2):1000-1001. http://doi.org/10.1080/23802359.2018.1507643

Iriarte A, Lamolle G, Musto H (2021). Codon usage bias: an endless tale. Journal of Molecular Evolution http://doi.org/10.1007/s00239-021-10027-z

Karumathil S, Raveendran NT, Ganesh D, Kumar NS, Nair RR, Dirisala VR (2018). Evolution of SCU bias in West African and Central African strains of monkeypox virus. Evolutionary Bioinformatics 14:1-22. http://doi.org/10.1177/1176943318761368

Kawabe A, Miyashita NT (2003). Patterns of codon usage bias in three dicot and four monocot plant species. Genes & Genetic Systems 78(5):343-352. http://doi.org/10.1266/ggs.78.343

Krasovec M, Filatov DA (2019). Evolution of codon usage bias in Diatoms. Genes 10(11):894. http://doi.org/10.3390/genes10110894

Li GL, Pan ZL, Gao SC, He YY, Xia QY, Yan J, Yao HP (2019). Analysis of SCU of chloroplast genome in Porphyra umbilicalis. Genes Genomics 41:1173-1181. http://doi.org/10.1007/s13258-019-00847-1

Liu HB, Lu YZ, Lan BL, Xu JC (2020). Codon usage by chloroplast gene is bias in Hemiptalea davidii. Journal of Genetics 99:8. http://doi.org/10.1007/s12041-019-1167-1

Mazumdar P, Othman RYB, Mebus K, Ramakrishnan N, Harikrishna JA (2017). Codon usage and codon pair patterns in non-grass monocot genomes. Annals of Botany 120(6):893-909. http://doi.org/10.1093/aob/mcx112

Nair RR, Nandhini MB, Monalisha E, Murugan K, Sethuraman T, Nagarajan S, … Ganesh D (2012). Synonymous codon usage in chloroplast genome of Coffea arabica. Bioinformation 8(22):1096-104. http://doi.org/10.6026/97320630081096

Nie XJ, Deng PC, Feng KW, Liu PX, Du XH, Frank MY, Song WN (2014). Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family. Plant Molecular Biology Reporter 32:828-840. http://doi.org/10.1007/s11105-013-0691-z

Pu X, Li Z, Tian Y, Gao R, Hao L, Hu Y, … Song JY (2020). The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration. New Phytologist 227(3):930-943. http://doi.org/10.1111/nph.16552

Romero H, Zavala A, Musto H, Bernadi G (2003). The influence of translational selection on codon usage in fishes from the family Cyprinidae. Gene 317:141-147. http://doi.org/10.1016/s0378-1119(03)00701-7

Sueoka N (1988). Directional mutation pressure and neutral molecular evolution. Proceedings of the National Academy of Sciences of the United States of America 85:2653-2657. http://doi.org/10.1073/pnas.85.8.2653

Sueoka N (1999). Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position. Gene 238:53-58. http://doi.org/10.1016/S0378-1119(99)00320-0

Tang DF, Wei F, Cai ZQ, Wei YY, Khan A, Miao JH, Wei KH (2020). Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth. Development Genes and Evolution (4):1-9. http://doi.org/10.1007/s00427-020-00670-9

Wang LY, Wang J, He CY, Zhang JG, Zeng YF (2020a). Characterization and comparison of chloroplast genomes from two sympatric Hippophae species (Elaeagnaceae). Journal of Forestry Research 32(7):307-318. http://doi.org/10.1007/s11676-019-01079-5

Wang LY, Xing HX, Yuan YC, Wang XL, Saeed M, Tao JC, … Sun XZ (2018). Genome-wide analysis of codon usage bias in four sequenced cotton species. PLoS One 13(3):e0194372. http://doi.org/10.1371/journal.pone.0194372

Wang TT, Yang BX, Guan QJ, Chen X, Zhong ZZ, Huang W, … Tian JK (2019). Transcriptional regulation of Lonicera japonica Thunb. during flower development as revealed by comprehensive analysis of transcription factors. BMC Plant Biology 19(1):198. http://doi.org/10.1186/s12870-019-1803-1

Wang Z, Xu B, Li B, Zhou Q, Wang G, Jiang X, Wang C, Xu Z (2020b). Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species. Peer J 8:e8251. http://doi.org/10.7717/peerj.8251

Wright F (1990). The ‘effective number of codons’ used in a gene. Gene 87:23-29. http://doi.org/10.1016/0378-1119(90)90491-9

Yengkhom S, ArifUddin Y, Chakraborty S (2019). Deciphering codon usage patterns and evolutionary forces in chloroplast genes of Camellia sinensis var. assamica and Camellia sinensis var. sinensis in comparison to Camellia pubicosta. Journal of Integrative Agriculture 18(12):2771-2785. http://doi.org/10.1016/S2095-3119(19)62716-4

Zhang R, Zhang L, Wang W, Zhang Z, Du H, Qu Z, Li XQ, Xiang H (2018). Differences in codon usage bias between photosynthesis-related genes and genetic system-related genes of chloroplast genomes in cultivated and wild solanum species. International Journal of Molecular Sciences 19(10):3142. http://doi.org/10.3390/ijms19103142

Zhang WJ, Zhou J, Li ZF, Wang L, Gu X, Zhong Y (2007). Comparative analysis of codon usage patterns among mitochondrion, chloroplast and nuclear genes in Triticum aestivum L. Journal of Integrative Plant Biology 49:246-254. http://doi.org/10.1111/j.1672-9072.2007.00404.x

Zhang Y, Nie X, Jia X, Zhao C, Biradar SS, Wang L, Du X, Weining S (2012). Analysis of codon usage patterns of the chloroplast genomes in the Poaceae family. Australian Journal of Botany 60:461-470. http://doi.org/10.1071/BT12073

Zhou M, Long W, Li X (2008). Analysis of synonymous codon usage in chloroplast genome of Populus alba. Journal of Forestry Research 19:293-297. http://doi.org/10.1007/s11676-008-0052-1

Published
2022-02-24
How to Cite
ZHANG, J., LIU, H., XU, W., & ZHU, K. (2022). Analysis of codon usage pattern in Lonicera × heckrottii ‘Gold Flame’ based on chloroplast genome. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12535. https://doi.org/10.15835/nbha50112535
Section
Research Articles
CITATION
DOI: 10.15835/nbha50112535