Endogenous hormone and nutritional ingredient of pendulous characteristics of Cunninghamia lanceolata var. Luotian

  • Yujie YANG Yangtze University, College of Horticulture and Gardening, Jingzhou 434025, Hubei (CN)
  • Yezhou XU Hubei Academy of Forestry, Wuhan 430075, Hubei (CN)
  • Chaoqun DU Hubei Academy of Forestry, Wuhan 430075, Hubei (CN)
  • Hui YUAN Hubei Academy of Forestry, Wuhan 430075, Hubei (CN)
  • Shaoliang YAN Forestry Bureau of Luotian Country, Huanggang 438000, Hubei (CN)
  • Chu WU Yangtze University, College of Horticulture and Gardening, Jingzhou 434025, Hubei (CN)
Keywords: Cunninghamia lanceolata var. Luotian, morphology, nutritional ingredient, pendulous characteristics, phytohormones

Abstract

Cunninghamia lanceolata var. Luotian (herein, Luotian), a natural variety of Cunninghamia lanceolata (Chinese fir, herein Lanceolata), shows great potential for agricultural protection short-period and high-density plantations because of its narrow, pointed, tower-shaped crowns, thin braches and older drooping branches that die naturally at 6-7 years old. The physiological mechanisms of the pendulousness and the natural death of the branches are still unclear. To investigate these mechanisms, phytohormone levels and nutritional ingredients of different positions of branches in Luotian and Lanceolata were determined. Phytohormone analyses showed that IAA and ZR played critical functions on the branch initial growth, and that GA3 was related to bending of branches. Meanwhile, ABA may enhance abscission of the branches in Luotian. Nutritional ingredient analyses showed that the accumulation of nutritional ingredients in Luotian and Lanceolata were consistent with the morphology of their branches. An integrated analysis implied that phytohormones had a strong influence on pendulous characteristics by interacting with other factors. This study helps to elucidate the mechanism governing the pendulous trait and provides theoretical basis and technical support for its cultivation, introduction, plantation management and genetic improvement.

Metrics

Metrics Loading ...

References

Bradford MM (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3

Chatfield SP, Stirnberg P, Forde BG, Leyser O (2000). The hormonal regulation of axillary bud growth in Arabidopsis. Plant Journal 24(2):159-169. https://doi.org/10.1046/j.1365-313x.2000.00862.x

Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009). Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology 1(66):324-328. https://doi.org/10.1016/j.jplph.2008.06.002

Davies PJ (2010). The plant hormones: their nature, occurrence, and functions. Plant hormones. Germany: Springer, pp 1-15. http://www.onacademic.com/detail/journal_1000034835382310_7428.html

Graham IA, Denby JK, Leaver CJ (1994). Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell (6):761-772.

Hallé F, Oldeman RAA, Tomlinson PB (1978). Tropical trees and forests: an architectural analysis. New York, Springer-Verlag. http://dx.doi.org/10.1007/BF02892746

Hollender CA, Dardick C (2015). Molecular basis of angiosperm tree architecture. New Phytologist 206:541-556. http://dx.doi.org/10.1111/nph.13204

Huang GW, Du CQ, Chen HC, Xu XY, Yan SL, Xu YZ (2016). Study on the rooting ability of the cuttings from Cunninghamia Lanceolata cv. Luotian. Hubei Forestry Science and Technology 45(1):12-15. http://dx.doi.org/CNKI:SUN:FBLI.0.2016-01-003

Huang GW, Du CQ, Ma LJ, Xu XY, Yan SL, Xu YZ (2015). Analysis of photosynthetic physiological characteristics of Cunninghamia lanceolata ‘Luotian’ in different age lateral branches. Journal of Forest and Environment 35(3):236-242. http://dx.doi.org/10.13324/j.cnki.jfcf.2015.03.009

Hubei Institute of Forestry, Huanggang Institute of Forestry, Luotian County Institute of Forestry (1977). A preliminary report on a fine type of Chinese-fir. Hubei Forestry Science and Technology 1:15-19. http://dx.doi.org/CNKI:SUN:FBLI.0.1977-01-006

Israelsson M, Sundberg B, Moritz T (2005). Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. The Plant Journal 44(3):494-504. http://dx.doi.org/10.1111/j.1365-313X.2005.02547.x

Jang JC, Sheenh J (1997). Sugar sensing in higher plants. Plant Science 2:208-214. https://doi.org/10.1016/S1360-1385(97)89545-3

Kei-Ichi B, Adachi K, Take T, Yokoyama T, Nakamura T (1995). Induction of tension wood in GA3-treated branches of the weeping type of Japanese cherry, Prunus spachiana. Plant Cell Physiology 36:983-988. https://doi.org/10.1093/oxfordjournals.pcp.a078870

Koch KE, Ying Z. Wu Y, et al. (2000). Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. Journal of Experimental Botany 51:417-427. https://doi.org/10.1093/jexbot/51.suppl_1.417

Leng P, Yuan B, Guo Y (2014). The role of abscisic acid in fruit ripening and responses to abiotic stress. Journal of Experimental Botany 65:4577-4588. https://doi.org/10.1093/jxb/eru204

Li L, and Deng QL (2012). Study on filial generation morphological genetics in seed orchard of Cunninghamia Lanceolata cv. Luotian. Hubei Forestry Science and Technology 174(2):23-25. https://doi.org/10.1038/s41438-020-0279-3

Li S, Zheng T, Zhou X, Li Z, Li L, Li P, Qiu L, P H, Wang J, Cheng T, Zhang Q (2020). Transcriptome profiles reveal that gibberellin-related genes regulate weeping traits in crape myrtle. Horticulture Research 7:54. https://doi.org/10.1038/s41438-020-0279-3

Liu J, Zeng Y, Yan P, He C, Zhang J (2017). Transcriptional and hormonal regulation of weeping trait in Salix matsudana. Genes 8(12):359. https://doi.org/10.3390/genes8120359

Loreti E, Bellis L D, Alpi A (2001). Why and how do plant cells sense sugars. Annals of Botany 88:803-812. https: //doi.org/10.1006/anbo.2001.1526

Lv YM, Chen J Y (2003). Preliminary report on the genetics of pendulous characteristics of Prunusmume. Journal of Beijing Forestry University 25(Supp):43-45.

Lv YM (2001). Pendulous landscape trees and shrubs and their application in landscaping. Journal of Beijing Forestry University 23(Supp.):92-94. https://doi.org/CNKI:SUN:BJLY.0.2001-S2-032

Mellerowicz E J, Baucher M, Sundberg B (2001). Unravelling cell wall formation in the woody dicot stem. Plant Cell Walls: Springer, pp 239-274. https://doi.org/10.1007/978-94-010-0668-2_15

Morcuende R, Krappe A, Hhrry V (1998). Surose feeding leads to increased rates of nitrate assimilation, increased rates of α-oxoglutarate synthesis, and increased synthesis of a wide spectrum of amino acids in tobacco leaves. Plants (206):394-409. https://doi.org/10.1007/s004250050415

Nakamura T, Saotome M, Ishiguro Y, Itoch R, Higurashi S, Hosono M, Ishii Y (1994). The effects of GA3 on weeping of growing shoots of the Japanese cherry, Prunus spachiana. Plant Cell Physiolology 35(3):523-527. https://doi.org/10.1007/s00417-002-0444-4

Nakamura T, Saotome M, Tanaka H (1995). Weeping habit and gibberellin in Prunus. Acta Horticulturae 394:273-280. https://doi.org/10.1007/s00417-002-0444-4

Nugroho WD, Yamagishi Y, Nakaba S, Fukuhara S, Begum S, Marsoem SN, Ko J-H, Jin H-O, Funada R (2012). Gibberellin is required for the formation of tension wood and stem gravitropism in Acacia mangium seedlings. Annals of Botany 110(4):887-895. https://doi.org/10.1093/aob/mcs148.

Plomion C, Leprovost G, Stokes A (2001). Wood formation in trees. Plant Physiology 127(4):1513-1523. https://doi.org/10.1201/b16714

Pretzsch H, Biber P, Uhl E, Dahlhausen J, Ro¨tzer T, Caldentey J, … Pauleit S (2015). Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban For Urban Green 14:466-479. http://dx.doi.org/10.1016/j.ufug.2015.04.006

Riazi A, Matsuda K, Arslan A (1985). Water-stress induced changes in concentrations of proline and other solutes in growing regions of young barley leaves. Journal of Experimental Botany, 36:1716-1725. https: //doi.org/10.1093/jxb/36.11.1716

Salojärvi J, Smolander O-P, Nieminen K, Rajaraman S, Safronov O, Safdari P, … Kangasjärvi J (2017). Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics 49(6):904-912. https://doi.org/10.1038/ng.3862

Srivastava LM (2002). Plant growth and development: Hormones and Environment. Elsevier Sci. USA. http://library.oum.edu.my/oumlib/content/catalog/719956

Sundberg B, Uggla C, Tuominen H (2000). Cambial growth and auxin gradients. BIOS Scientific Publishers Ltd., Oxford, UK, pp 169-188.

Tworkoshi T, Scorza R (2001). Root and shoot characteristics of peach trees with different growth habits. Journal of the American Society for Horticultural Science 126:785-790. https://doi.org/10.21273/JASHS.126.6.785

Wang B, Smith SM, Li JY (2018). Genetic regulation of shoot architecture. Annual Review of Plant Biology 69:25. https://doi.org/10.1146/annurev-arplant-042817-040422

Wang F (2014). Separation, endogenous hormone and molecular research of pendulous characteristics of Prunus mume. Master Thesis. Beijing Forestry University, Beijing, China.

Wang YH, Li JY (2008). Molecular basis of plant architecture. Annual Review of Plant Biology 59:253-279.

Werner JD, Chaparro JX (2005). Genetic interactions of pillar and weeping peach genotypes. HortScience 40(1):18-20.

Wu ZL (1984). Cunninghamia lanceolata. China Forestry Publishing House, Beijing, pp 202-203.

Xiong LD (1984). A preliminary study on the natural branch drooping and shedding characteristics of Cunninghamia lanceolata (Lamb.) Hk. cv. Luotian. Hubei Forestry Science and Technology 2:8-12. https://doi.org/CNKI:SUN:FBLI.0.1984-02-002

Xu H, Sun Y, Wang X, Wang J, Fu Y (2015). Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian province, southeast China. PLoS One 10(4):e0122257. https://doi.org/10.1371/journal.pone.0122257

Xu YZ, Du CQ, Xu XY, Hu XY, Zhang YD, Xu XH, Huang GW, Fang LQ (2016). A new variety of Cunninghamia Lanceolata ‘E Sha 1’. Scientia Silvae Sinicae 52(11):170. https://doi.org/CNKI:SUN:LYKE.0.2016-11-021

Xu YZ, Huang GW, Shu FF, Du CQ, Xu XY, Yan SL, Chen HC, Yuan H (2017). The technology of light substrate container cuttage of Cunninghamia Lanceolata cv. Luotian. Hubei Forestry Science and Technology 46(4):84-85. https://doi.org/CNKI:SUN:FBLI.0.2017-04-024

Xu YZ, Tang WP, Hu XY, Zhang P (2005). Study on biological characteristics of Cunninghamia lanceolata (Lamb) Hk. cv. Luotian-A superior variation of Cunninghamia Lanceolata. Journal of Wuhan Botanical Research 23(6):577-582. http://europepmc.org/abstract/CBA/602162

Xu Y, Du C, Huang G, Li Z, Xu X, Zheng J, Wu C (2020). Morphological characteristics of tree crowns of Cunninghamia lanceolata var. Luotian. Journal of Forestry and Research 31: 837-856. https://doi.org/10.1007/s11676-019-00901-4

Yamanouchi H, Koyama A, Machii H, Takyu T, Muramatsu N (2009). Inheritance of a weeping character and the low frequency of rooting from cutting of the mulberry variety ‘Shidareguwa’. Plant Breeding 128:321-323. https://doi.org/10.1111/j.1439-0523.2008.01587.x

Yang XM, Cheng C, Peng YB, Xiang J, Li SS, Xu YZ, Huang GW (2018). Comparative anatomical observation on terminal bud of Cunninghamia lanceolata (Lamb) Hk. cv. Luotian and Cunninghamia lanceolata. Molecular Planting Breeding 16(23):7827-7833. http://dx.doi.org/10.13271/j.mpb.016.007827

Yoshida M, Yamamoto H, Okuyama T, Nakamura T (1999). Negative gravitropism and growth stress in GA3-treated branches of Prunusspachiana Kitamura f. spachiana Plenarosea. Journal of Wood Science 45:368-372. https://doi.org/10.1007/bf01177907

Zhang J, Zhang QX, Cheng TR, Yang WR, Pan HT, Zhong JJ, Huang L, Liu EZ (2015). High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. Et Zucc). DNA Research 22(3):183-191. https://doi.org/10.1093/dnares/dsv003

Zhang J (2016). Constriction of high-density genetic map and QTL analysis of ornamental traits in Mei. PhD Thesis. Beijing Forestry University, Beijing, China.

Zheng WJ (1983). Chinese trees. vol 1. China Science and Technology Press, Beijing, pp 307-310.

Published
2022-02-09
How to Cite
YANG, Y., XU, Y., DU, C., YUAN, H., YAN, S., & WU, C. (2022). Endogenous hormone and nutritional ingredient of pendulous characteristics of Cunninghamia lanceolata var. Luotian. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12528. https://doi.org/10.15835/nbha50112528
Section
Research Articles
CITATION
DOI: 10.15835/nbha50112528