Water content, carbohydrate accumulation, and secondary metabolites in Allium victorialis sprouts exposed to shoot cutting in varied irradiations
DOI:
https://doi.org/10.15835/nbha49412524Keywords:
artificial illumination, LED spectra, triterpenoid saponins, total flavonoids, Victory onionAbstract
Victory onion (Allium victorialis) is an edible vegetation that has significant value as a non-structural carbohydrate and secondary metabolite supplier. Easily measured leaf variables will be useful to predict for the flexible adjustment of physiochemical parameters in a cultural regime in plant factory conditions. Red, green, and blue light-emitting diode (LED) spectra were used to culture victory onion sprouts. Compared to the green-light spectrum, the red-light spectrum promoted leaf width and area, specific leaf area, and dry mass, water content, fine root growth, and starch accumulation in shoots, but lowered concentrations of total flavonoids and saponins. Sprouts had their shoots cut, but there were limited interactive effects with light spectra on most variables. In general, shoot-cutting depressed growth of leaf morphology, shoot weight, water content, and soluble sugar content, but enhanced accumulation of secondary metabolites. We did not find any relationship between leaf variables and secondary metabolites. Instead, wider leaves with a larger area generally had greater dry mass, water content, and soluble sugar accumulation. Leaves with deeper green colours generally had the opposite effects.
Metrics
References
Amanullah (2015). Specific leaf area and specific leaf weight in small grain crops wheat, rye, barley, and oats differ at various growth stages and NPK source. Journal of Plant Nutrition 38(11):1694-1708. http://doi.org/10.1080/01904167.2015.1017051
Ba J, Zhang C, Gao J, Qin Y, Wu C (2002). Nutritional components of Allium victorialis L. Journal of Inner Mongolia Agicultural University 23(4):114-115.
Beatty PH, Klein MS, Fischer JJ, Lewis IA, Muench DG, Good AG (2016). Understanding plant nitrogen metabolism through metabolomics and computational approaches. Plants 5(4):39. https://doi.org/10.3390/plants5040039
Brown CS, Schuerger AC, Sager JC (1995). Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. Journal of the American Society for Horticultural Science 120(5):808-813. http://doi.org/10.21273/jashs.120.5.808
Carotti L, Graamans L, Puksic F, Butturini M, Meinen E, Heuvelink E, Stanghellini C (2021). Plant factories are heating up: hunting for the best combination of light intensity, air temperature and root-zone temperature in lettuce production. Frontiers in Plant Science 11(2251):592171. http://doi.org/10.3389/fpls.2020.592171
Cornelissen JHC, Diez PC, Hunt R (1996). Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. Journal of Ecology 84(5):755-765. http://doi.org/10.2307/2261337
Dieleman JA, De Visser PHB, Meinen E, Grit JG, Dueck TA (2019). Integrating morphological and physiological responses of tomato plants to light quality to the crop level by 3D modeling. Frontiers in Plant Science 10(10):839. http://doi.org/10.3389/fpls.2019.00839
Dong C, Fu Y, Liu G, Liu H (2014). Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. Journal of Agronomy and Crop Science 200(3):219-230. https://doi.org/10.1111/jac.12059
Fedoroff NV, Cohen JE (1999). Plants and population: Is there time? Proceedings of the National Academy of Sciences 96(11):5903-5907. http://doi.org/10.1073/pnas.96.11.5903
Feldzensztajn M, Wierzba P, Mazikowski A (2021). Examination of spectral properties of medicinal plant leaves grown in different lighting conditions based on mint cultivation. Sensors 21(12):4122. http://doi.org/10.3390/s21124122
Gao J, Zhang J, He C, Wang Q (2021). Effects of light spectra and 15N pulses on growth, leaf morphology, physiology, and internal nitrogen cycling in Quercus variabilis Blume seedlings. PloS One 16(7):e0243954. https://doi.org/10.1371/journal.pone.0243954
Getman-Pickering ZL, Campbell A, Aflitto N, Grele A, Davis JK, Ugine TA (2020). LeafByte: A mobile application that measures leaf area and herbivory quickly and accurately. Methods in Ecology and Evolution 11(2):215-221. http://doi.org/10.1111/2041-210X.13340
Goins GD, Yorio NC, Sanwo MM, Brown CS (1997). Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. Journal of Experimental Botany 48(7):1407-1413. https://doi.org/10.1093/jxb/48.7.1407
Golubkina NA, Malankina EL, Kosheleva OV, Solov'eva AI (2010). Content of biologically active substances--selenium, flavonoids, ascorbic acid and chlorophyllin of Allium ursinum L and Allium victorialis L. Voprosy pitaniia 79(1):78-81.
Hashim M, Ahmad B, Drouet S, Hano C, Abbasi BH, Anjum S (2021). Comparative effects of different light sources on the production of key secondary metabolites in plants in vitro cultures. Plants 10(8):1521. http://doi.org/10.3390/plants10081521
He C, Zhao Y, Zhang J, Gao J (2020). Chitosan oligosaccharide addition to Buddhist Pine (Podocarpus macrophyllus (Thunb) Sweet) under drought: reponses in ecophysiology and δ13C abundance. Forests 11(5):526. https://doi.org/10.3390/f11050526
Kim KH, Chung S-O (2018). Comparison of plant growth and glucosinolates of Chinese cabbage and kale crops under three cultivation conditions. Journal of Biosystems Engineering 43(1):30-36. http://doi.org/10.5307/jbe.2018.43.1.030
Kubota C, Chia P, Yang Z, Li Q (2012). Applications of far-red light emitting diodes in plant production under controlled environments. Acta Horticulturae 952:59-66. https://doi.org/10.17660/ActaHortic.2012.952.4
Li X, Xia H, Wang J, Chen Q (2021). Nutrient uptake and assimilation in fragrant rosewood (Dalbergia odorifera T.C. Chen) seedlings in growing media with un-composted spent mushroom residue. PloS One 16(4):e0249534. http://doi.org/10.1371/journal.pone.0249534
Li Y, Kong D, Fu Y, Sussman MR, Wu H (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry 148:80-89. https://doi.org/10.1016/j.plaphy.2020.01.006
Lin S, Niklas KJ, Wan Y, Hölscher D, Hui C, Ding Y, Shi P (2020). Leaf shape influences the scaling of leaf dry mass vs. area: a test case using bamboos. Annals of Forest Science 77(1):11. https://doi.org/10.1007/s13595-019-0911-2
Liu P, Cao B, Wang Y, Wei Z, Ye J, Wei H (2021). Spectral effect of streetlamps on urban trees: A simulated study on tissue water, nitrogen, and carbohydrate contents in maple and oak. PLOS One 16(3):e0248463. http://doi.org/10.1371/journal.pone.0248463
Lu N (2021). Light environment and plant growth in plant factories. IOP Conference Series: Earth and Environmental Science 686(1):012002. http://doi.org/10.1088/1755-1315/686/1/012002
Luo Y, Zhao S, Tang J, Zhu H, Wei H, Cui W, Wang M, Guo P (2020). White-light emitting diodes’ spectrum effect on photosynthesis and nutrient use efficiency in Podocarpus macrophyllus seedlings. Journal of Plant Nutrition 43(19):2876-2884. https://doi.org/10.1080/01904167.2020.1798999
Nii N, Kato M, Hirano Y, Funaguma T (1993). Starch accumulation and photosynthesis in leaves of young peach trees growth under different levels of nitrogen application. Journal of the Japanese Society for Horticultural Science (Japan) 62(3):547-554.
Pearce RB, Carlson GE, Barnes DK, Hart RH, Hanson CH (1969). Specific leaf weight and photosynthesis in alfalfa. Crop Science 9(4):423-426. http://doi.org/10.2135/cropsci1969.0011183X000900040010x.
Rahman MH, Azad MOK, Islam MJ, Rana MS, Li KH, Lim YS (2021). Production of potato (Solanum tuberosum L.) seed tuber under artificial LED light irradiation in plant factory. Plants 10(2):15. http://doi.org/10.3390/plants10020297.
Sæbø A, Krekling T, Appelgren M (1995). Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell, Tissue and Organ Culture 41(2):177-185. https://doi.org/10.1007/BF00051588
Saito K, Ishigami Y, Goto E (2020). Evaluation of the light environment of a plant factory with artificial light by using an optical simulation. Agronomy 10(11):1663. http://doi.org/10.3390/agronomy10111663
Shipley B, Vile D, Garnier E, Wright IJ, Poorter H (2005). Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. Functional Ecology 19(4):602-615. http://doi.org/10.1111/j.1365-2435.2005.01008.x
Stutte GW, Edney S, Skerritt T (2009). Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 44:79-82. https://doi.org/10.21273/HORTSCI.44.1.79
Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009). Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant and Cell Physiology 50(4):684-697. https://doi.org/10.1093/pcp/pcp034
Thoma F, Somborn-Schulz A, Schlehuber D, Keuter V, Deerberg G (2020). Effects of light on secondary metabolites in selected leafy greens: a review. Frontiers in Plant Science 11:497. http://doi.org/10.3389/fpls.2020.00497
Wang R, Wang Y, Su Y, Tan JH, Luo XT, Li JY, He Q (2020). Spectral effect on growth, dry mass, physiology and nutrition in Bletilla striata seedlings: individual changes and collaborated response. International Journal of Agriculture and Biology 24(1):125-132. http://doi.org/10.17957/ijab/15.1416
Wei H, Hauer RJ, Chen G, Chen X, He X (2020). Growth, nutrient assimilation, and carbohydrate metabolism in Korean Pine (Pinus koraiensis) seedlings in response to light spectra. Forests 11(1):44. https://doi.org/10.3390/f11010044
Wei H, Xu C, Ma L, Duan J, Jiang L, Ren J (2014). Effect of late-season fertilization on nutrient reserves and carbohydrate accumulation in bareroot Larix olgensis seedlings. Journal of Plant Nutrition 37(2):279-293. https://doi.org/10.1080/01904167.2013.859697
Wei H, Zhao H, Chen X, He X (2020). Secondary metabolites, carbohydrate accumulation, and nutrient uptake in Aralia elata (Miq.) Seem seedlings exposed to shoot cutting and different LED spectra. Acta Physiologiae Plantarum 42(11):162. http://doi.org/10.1007/s11738-020-03149-2
Weraduwage SM, Chen J, Anozie FC, Morales A, Weise SE, Sharkey TD (2015). The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Frontiers in Plant Science 6:167. http://doi.org/10.3389/fpls.2015.00167
Xu H, Xu Q, Li F, Feng Y, Qin F, Fang W (2012). Applications of xerophytophysiology in plant production–LED blue light as a stimulus improved the tomato crop. Scientia Horticulturae 148:190-196. https://doi.org/10.1016/j.scienta.2012.06.044
Xu L, Zhang X, Zhang D, Wei H, Guo J (2019). Using morphological attributes for the fast assessment of nutritional responses of Buddhist pine (Podocarpus macrophyllus [Thunb.] D. Don) seedlings to exponential fertilization. PLoS One 14(12):e0225708. http://doi.org/10.1371/journal.pone.0225708
Zavala-García LE, Sánchez-Segura L, Avila de Dios E, Pérez-López A, Simpson J (2018). Starch accumulation is associated with active growth in A. tequilana. Plant Physiology and Biochemistry 130:623-632. https://doi.org/10.1016/j.plaphy.2018.08.011
Downloads
Published
How to Cite
Issue
Section
License
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.