Automatic particle detectors lead to a new generation in plant diversity investigation

Authors

  • Ingrida ŠAULIENĖ Vilnius University, Šiauliai Academy, Institute of Regional Development, P. Višinskis str. 25, 76351, Šiauliai (LT)
  • Laura ŠUKIENĖ Vilnius University, Šiauliai Academy, Institute of Regional Development, P. Višinskis str. 25, 76351, Šiauliai (LT)
  • Gintautas DAUNYS Vilnius University, Šiauliai Academy, Institute of Regional Development, P. Višinskis str. 25, 76351, Šiauliai (LT)
  • Gediminas VALIULIS Vilnius University, Šiauliai Academy, Institute of Regional Development, P. Višinskis str. 25, 76351, Šiauliai (LT)
  • Lukas VAITKEVIČIUS Vilnius University, Šiauliai Academy, Institute of Regional Development, P. Višinskis str. 25, 76351, Šiauliai (LT)

DOI:

https://doi.org/10.15835/nbha49312444

Keywords:

airborne pollen, Hirst type spore trap, near real-time data

Abstract

Technological progress in modern scientific development generates opportunities that create new ways to learn more about objects and systems of nature. An important indicator in choosing research methods is not only accuracy but also the time and human resources required to achieve results. This research demonstrates the possibilities of using an automatic particle detector that works based on scattered light pattern and laser-induced fluorescence for plant biodiversity investigation. Airborne pollen data were collected by two different devices, and results were analysed in light of the application for plant biodiversity observation. This paper explained the possibility to gain knowledge with a new type of method that would enable biodiversity monitoring programs to be extended to include information on the diversity of airborne particles of biological origin. It was revealed that plant conservation could be complemented by new tools to test the effectiveness of management plans and optimise mitigation measures to reduce impacts on biodiversity.

References

Anenberg SC, Haines S, Wang E, Nassikas N, Kinney PL (2020). Synergistic health effects of air pollution, temperature, and pollen exposure: a systematic review of epidemiological evidence. Environmental Health 19:1-19. https://doi.org/10.1186/s12940-020-00681-z

Attali D, Baker C (2018). ggExtra: Add Marginal Histograms to ‘ggplot2’, and More ‘ggplot2’ Enhancements. R package version 0.8. Retrieved 2021 July 07 from https://cran.r-project.org/web/packages/ggExtra/index.html

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012). Impacts of climate change on the future of biodiversity. Ecology Letters 15:365-377. https://doi.org/10.1111/j.1461-0248.2011.01736.x

Bousquet J, Akdis CA, Jutel M, Bachert C, Klimek L, Agache I, ... Philip L (2020). Intranasal corticosteroids in allergic rhinitis in COVID‐19 infected patients: An ARIA‐EAACI statement. Allergy 75:2440-2444. https://doi.org/10.1111/all.14302

Buters JT, Thibaudon M, Smith M, Kennedy R, Rantio-Lehtimäki A, Albertini R, ... Hialine Working Group (2012). Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmospheric Environment 55:496-505. https://doi.org/10.1016/j.atmosenv.2012.01.054

Cariñanos P, Calaza-Martínez P, O’Brien L, Calfapietra C (2017). The cost of greening: disservices of urban trees. In: Pearlmutter D, Calfapietra C, Samson R, O’Brien L, Ostoić SK, Sanesi G, Alonso del Amo R (Eds). The Urban Forest. Springer, Cham pp 79-87.

Carvalho E, Sindt C, Verdier A, Galan C, O’Donoghue L, Parks S, Thibaudon M (2008). Performance of the Coriolis air sampler, a high-volume aerosol-collection system for quantification of airborne spores and pollen grains. Aerobiologia 24:191-201. https://doi.org/10.1007/s10453-008-9098-y

Copernicus Atmosphere Monitoring Service (CAMS) (2019) Pioneering personalised allergy medicine Retrieved 2021 July 1 from https://atmosphere.copernicus.eu/pioneering-personalised-allergy-medicine

Cunha M, Ribeiro H, Costa P, Abreu I (2015). A comparative study of vineyard phenology and pollen metrics extracted from airborne pollen time series. Aerobiologia 31:45-56. https://doi.org/10.1007/s10453-014-9345-3

Damialis A, Gilles S, Sofiev M, Sofieva V, Kolek F, Bayr D, ... Covid-19/Pollen Study Group (2021). Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe. Proceedings of the National Academy of Sciences 118(12). https://doi.org/10.1073/pnas.2019034118

Daunys G, Šukienė L, Vaitkevičius L, Valiulis G, Sofiev M, Šaulienė I (2021). Clustering approach for the analysis of the fluorescent bioaerosol collected by an automatic detector. PloS One 16:e0247284. https://doi.org/10.1371/journal.pone.0247284

EN16868 (2019). Ambient air-Sampling and analysis of airborne pollen grains and fungal spores for networks related to allergy - Volumetric Hirst method. European Standards.

Felde VA, Peglar SM, Bjune AE, Grytnes JA, Birks HJB (2014). The relationship between vegetation composition, vegetation zones and modern pollen assemblages in Setesdal, southern Norway. The Holocene 24:985-1001. https://doi.org/10.1177/0959683614534745

Fernández-Llamazares Á, Belmonte J, Boada M, Fraixedas S (2014). Airborne pollen records and their potential applications to the conservation of biodiversity. Aerobiologia 30:111-122. https://doi.org/10.1007/s10453-013-9320-4

Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J, Gehrig R, … EAS QC Working Group (2014). Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia 30:385-395. https://doi.org/10.1007/s10453-014-9335-5

Garnier S, Ross N, Rudis R, Filipovic-Pierucci A, Galili T, timelyportfolio, … Chen JJ (2021). sjmgarnier/viridis: viridis 0.6.0 (pre-CRAN release) (Version v0.6.0pre). Zenodo. http://doi.org/10.5281/zenodo.4679424

Gilles S, Blume C, Wimmer M, Damialis A, Meulenbroek L, Gökkaya M, ... Traidl‐Hoffmann C (2020). Pollen exposure weakens innate defense against respiratory viruses. Allergy 75:576-587. https://doi.org/10.1111/all.14047

Grolemund G, Wickham H (2011). Dates and times made easy with lubridate. Journal of Statistical Software 40:1-25. https://doi.org/10.18637/jss.v040.i03

Haahtela T, Holgate S, Pawankar R, Akdis CA, Benjaponpitak S, Caraballo L, ... von Hertzen L (2013). The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organization Journal 6:1-18. https://doi.org/10.1186/1939-4551-6-3

Hirst J (1952). An automatic volumetric spore trap. Annals of Applied Biology 39:257-265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x

Huffman JA, Perring AE, Savage NJ, Clot B, Crouzy B, Tummon F, ... Pan Y (2020). Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Science and Technology 54:465-495. https://doi.org/10.1080/02786826.2019.1664724

Klimek L, Bachert C, Pfaar O, Becker S, Bieber T, Brehler R. ... Bousquet J (2019). ARIA guideline 2019: treatment of allergic rhinitis in the German health system. Allergo Journal International 28:255-276. https://doi.org/10.1007/s40629-019-00110-9

Kraaijeveld K, De Weger LA, Ventayol García M, Buermans H, Frank J, Hiemstra PS, Den Dunnen JT (2015). Efficient and sensitive identification and quantification of airborne pollen using next‐generation DNA sequencing. Molecular Ecology Resources 15:8-16. https://doi.org/10.1111/1755-0998.12288

McInnes RN, Hemming D, Burgess P, Lyndsay D, Osborne NJ, Skjøth CA, ... Vardoulakis S (2017). Mapping allergenic pollen vegetation in UK to study environmental exposure and human health. Science of the Total Environment 599:483-499. https://doi.org/10.1016/j.scitotenv.2017.04.136

Mercuri AM (2015) Applied palynology as a trans-disciplinary science: the contribution of aerobiology data to forensic and palaeoenvironmental issues. Aerobiologia 31:323-339. https://doi.org/10.1007/s10453-015-9367-5

Oteros J, Weber A, Kutzora S, Rojo J, Heinze S, Herr C, ... Buters JT (2020). An operational robotic pollen monitoring network based on automatic image recognition. Environmental Research 191:110031. https://doi.org/10.1016/j.envres.2020.110031

PalDat (2000). PalDat – a palynological database. Retrieved 2021 July 5 from https://www.paldat.org/

Pfaar O, Agache I, Bergmann KC, Bindslev‐Jensen C, Bousquet J, Creticos PS, ... Frew AJ (2021). Placebo effects in allergen immunotherapy-an EAACI Task Force Position Paper. Allergy 76:629-647. https://doi.org/10.1111/all.14331

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Retrieved 2021 June 28 from https://www.R-project.org/

RStudio Team (2016). R Studio: Integrated Development for R. R Studio. Retrieved 2021 June 28 from http://www.rstudio.com/

Reitalu T, Bjune AE, Blaus A, Giesecke T, Helm A, Matthias I, ... Birks HJB (2019). Patterns of modern pollen and plant richness across northern Europe. Journal of Ecology 107:1662-1677. https://doi.org/10.1111/1365-2745.13134

Šaulienė I, Šukienė L, Daunys G, Valiulis G, Vaitkevičius L, Matavulj P, ... Sofiev M (2019). Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience, and next steps. Atmospheric Measurement Techniques 12:3435-3452. https://doi.org/10.5194/amt-12-3435-2019

Sauvageat E, Zeder Y, Auderset K, Calpini B, Clot B, Crouzy B, ... Vasilatou K (2020). Real-time pollen monitoring using digital holography. Atmospheric Measurement Techniques 13:1539-1550. https://doi.org/10.5194/amt-13-1539-2020

Schaefer J, Milling M, Schuller B., Bauer B., Brunner JO, Traidl-Hoffmann C, Damialis A (2021). Towards automatic airborne pollen monitoring: From commercial devices to operational by mitigating class-imbalance in a deep learning approach. Science of The Total Environment 148932. https://doi.org/10.1016/j.scitotenv.2021.148932

Schüler L, Hemp A, Behling H (2014). Relationship between vegetation and modern pollen-rain along an elevational gradient on Kilimanjaro, Tanzania. The Holocene 24:702-713. https://doi.org/10.1177/0959683614526939

Sharma CM, Khanduri VP (2007). Pollen-mediated gene flow in Himalayan long needle pine (Pinus roxburghii Sargent). Aerobiologia 23:153-158. https://doi.org/10.1007/s10453-007-9056-0

Šikoparija B (2020). Desert dust has a notable impact on aerobiological measurements in Europe. Aeolian Research 47:100636. https://doi.org/10.1016/j.aeolia.2020.100636

Simón BE, Latorre F, Rotundo C (2018). Study of the reproductive phenology of Araucaria angustifolia in two environments of Argentina: Its application to the management of a species at risk. Global Ecology and Conservation 16:e00483. https://doi.org/10.1016/j.gecco.2018.e00483

Skjøth CA, Sun Y, Karrer G, Sikoparija B, Smith M, Schaffner U, Müller-Schärer H (2019). Predicting abundances of invasive ragweed across Europe using a “top-down” approach. Science of the Total Environment 686:212-222. https://doi.org/10.1016/j.scitotenv.2019.05.215

Tešendić D, Boberić Krstićev D, Matavulj P, Brdar S, Panić M, Minić V, Šikoparija B (2020). RealForAll: real-time system for automatic detection of airborne pollen. Enterprise Information Systems 1-17. https://doi.org/10.1080/17517575.2020.1793391

Thibaudon M, Šikoparija B, Oliver G, Smith M, Skjøth CA (2014). Ragweed pollen source inventory for France–The second largest centre of Ambrosia in Europe. Atmospheric Environment 83:62-71. https://doi.org/10.1016/j.atmosenv.2013.10.057

Tormo R, Silva I, Gonzalo Á, Moreno A, Pérez R, Fernández S (2011). Phenological records as a complement to aerobiological data. International Journal of Biometeorology 55:51-65. https://doi.org/10.1007/s00484-010-0308-2

Valiulis G, Šukienė L, Vaitkevičius L, Daunys G, Sofiev M, Šaulienė I (2020a). Woody plants pollen dataset from automatic particle detector in Šiauliai (Version 1.1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3873205

Valiulis G, Šukienė L, Vaitkevičius L, Daunys G, Sofiev M, Šaulienė I (2020b). Herbaceous plants pollen dataset from automatic particle detector in Šiauliai (Version 1.1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3873204

Veriankaitė L, Šaulienė I, Bukantis A (2010). The modelling of climate change influence on plant flowering shift in Lithuania. Žemdirbystė (Agriculture) 97:41-48.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Williams RH, Ward E, McCartney HA (2001). Methods for integrated air sampling and DNA analysis for detection of airborne fungal spores. Applied and Environmental Microbiology 67:2453-2459. http://doi.org/10.1128/AEM.67.6.2453-2459.2001

Downloads

Published

2021-09-08

How to Cite

ŠAULIENĖ, I., ŠUKIENĖ, L., DAUNYS, G. ., VALIULIS, G. ., & VAITKEVIČIUS, L. (2021). Automatic particle detectors lead to a new generation in plant diversity investigation. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 12444. https://doi.org/10.15835/nbha49312444

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha49312444

Most read articles by the same author(s)