Bacillus amyloliquefaciens as a halo-PGPB and chitosan effects in nutritional value and yield production of Asparagus officinalis L. under Sonora desert conditions


  • Jesús ORTEGA-GARCÍA Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias de la Unidad Regional Norte (MX)
  • Ramón J. HOLGUÍN-PEÑA Centro de Investigaciones Biológicas del Noroeste, Programa de Agricultura en Zonas Áridas, Av. Instituto Politécnico Nacional 195 Col. Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur (MX)
  • Pablo PRECIADO-RANGEL Instituto Tecnológico Nacional de México - Instituto Tecnológico de Torreón, Torreón, Coahuila (MX)
  • Reyna R. GUILLÉN-ENRÍQUEZ Instituto Tecnológico Nacional de México - Instituto Tecnológico de Torreón, Torreón, Coahuila (MX)
  • Gerardo ZAPATA-SIFUENTES Instituto Tecnológico Nacional de México - Instituto Tecnológico de Torreón, Torreón, Coahuila (MX)
  • Juan M. NAVA-SANTOS Universidad Autónoma Agraria Antonio Narro. Unidad Laguna, Carretera periférico s/n. Colonia Valle Verde. CP: 27054 Torreón, Coahuila (MX)
  • Edgar O. RUEDA-PUENTE Universidad de Sonora, Departamento de Agricultura y Ganadería, Boulevard Luis Encinas y Rosales s/n. Col. Centro, C.P. 83000, Hermosillo, Sonora (MX)



biofertilzer, halotolerant, mitigation, promoter effect, saline intrusion


Asparagus officinalis L. is a crop associated with arid and dry environments of arid deserts; its tender product is considered a gourmet food for its exclusive consumption and its high prices. Among the main attributes of this vegetable are being a product low in calories, fat and cholesterol, with a high content of vitamin C, as well as rich in potassium and calcium phosphate. The indiscriminate use of synthetic fertilizers in agricultural crop production systems, as well as the increasing dependence, they cause deterioration of the physical and chemical properties of the soil, in addition have a variable impact on the composition and functions of the soil microbiota. Under indigenous area “Seris” in Sonora desert conditions (salinity and high °C), var. ‘Early California’ of asparagus was biofertilized with Bacillus amyloliquefaciens (Ba) as a halo-PGPB and chitosan (QUI) to evaluate nutritional value and yield-production. Results showed that Ba and QUI in the vegetative period increased the emergence rate (≥15%), nitrates in sap (≥10%), fresh and root weight and crown (≥25%); significant values in its subsequent production stage of shoots for human consumption (proximal values such as protein (≥33%), and carbohydrates (≥20%), in addition to K+ (≥9%) and Vit C (≥15%) compared with the control, were obtained. These results express the possibility of using Bacillus amyloliquefaciens as a halo-PGPB and chitosan as a biofertilizer of marine origin in asparagus under Sonora desert conditions.


Abdel-Mawgoud AMR, Tantawy TA, El-Nemr MA, Sassine YN (2010). Growth and yield responses of strawberry plants to chitosan application. European Journal of Scientific Research 39(1):170-177.

Ahmed B, Zaidi A, Khan MS, Rizvi A, Saif S, Shahid M (2017). Perspectives of plant growth promoting rhizobacteria in growth enhancement and sustainable production of tomato. In: Zaidi A and Khan MS (Eds). Microbial Strategies for Vegetable Production. Cham, Switzerland: Springer Nature, pp 125-149.

Arora NK, Verma M, Mishra J (2017). Rhizobial bioformulations: past, present and future rhizotrophs. Plant Growth Promotion to Bioremediation. Springer, pp 69-99.

Bagwell Ch, Dantzler M, Bergholz P, Lovell Ch (2001). Host-specific ecotype diversity of rhizoplane diazotrophs of the perennial glasswort Salicornia virginica and selected salt mash grasses. Journal Aquatic Microbiol Ecology 23:293-300.

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57:233-266.

Barnes H, Blachstock J (1973). Estimation of lipids in marine animal and tissues: detailed investigation of sulphophosphovanil method for ‘total’ lipids. Journal of Experimental Marine Biology and Ecology 12:103-118.

Beltrán-Burboa C, Arce M, Bianciotto O, ... Rueda-Puente E (2017). Salicornia bigelovii (Torr.): A model system to be incorporated as an agricultural crop in arid-desert areas. Biotecnia 19:46-50.

Bernadette DJ (2014). Obtaining chitin and chitosan from exoskeletons of Patagonian crustaceans: characterization and applications.

Blackmar A, Mallarino A (1996). Physiological production stage prepared by research agronomists. In: Bredha J, Kreme R (Eds). Proyecto Agricultura de Precisión Manfredi. Dept. of Agronomy. Iowa State University, Ames.

Carrillo A, Puente M, Castellanos T, Bashan Y (1998). Aplicaciones Biotecnologicas de Ecologia Microbiana. [Biotechnological Applications of Microbial Ecology]. Manual de Laboratorio. Pontificia Universidad Javeriana, Santafé de Bogotá, Colombia- Centro de Investigaciones Biológicas del Noroeste La Paz, Baja California Sur, México, pp 51.

Cheah L, Page B, Shepherd R (1997). Chitosan coating for inhibition of Sclerotinia rot of carrots. New Zealand Journal of Crop and Horticultural Science 25(1):89-92.

Chibu H, Shibayama H (2003). Effects of chitosan application on the growth of several crops. In: Uragami T, Kurita K, Fukamizo T (Eds). Chitin and chitosan in life science. Yamaguchi, Japan, 235-239.

Covas CA (2006). Estudios sobre quitina y quitosano. [Studies on chitin and chitosan]. Trabajo presentado para optar por el grado científico de Doctor en Ciencias. Universidad de La Habana - Cuba.

De La Paz N, Fernández M, López O, Nogueira A, García C, Pérez D, Díaz D (2012). Optimización del proceso de obtención de quitosano derivada de quitina de langosta. [Optimization of the process for obtaining chitosan derived from lobster chitin]. Revista Iberoamericana de Polímeros 13(3):103-116.

Devlieghere F, Vermeulen A, Debevere J (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology 21(6):703-714.

Dima JB, Sequeiros C, Zaritzky N (2017). Síntesis de microesferas de quitosano para encapsular y liberar fertilizante. [Chitosan microsphere synthesis to encapsulate and release fertilizer]. In IV Jornadas de Investigación, Transferencia y Extensión de la Facultad de Ingeniería. Argentina.

Efe D (2020). Potential plant growth-promoting bacteria with heavy metal resistance. Current Microbiology

El-Miniawy SM, Ragab ME, Youssef SM, Metwally AA (2013). Response of strawberry plants to foliar spraying of chitosan. Research Journal of Agriculture and Biological Sciences 9(6):366-372.

González-Gómez L, Jiménez M, Vaquero L, Paz I, Falcón A, Araujo L (2017). Evaluation of the application of chitosan on tobacco seedlings (Nicotiana tabacum L.). Revista Centro Agrícola 44(1):34-40.

Guan YJ, Hu J, Wang-Xian J, Shao-Chen X (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University Science B 10(6):427-433.

Haahtela K, Ronkko R, Laaskso T, Williams P, Korhonen T (1990). Root-associated Enterobacter and Klebsiella in Poa pratensis: Characterization of an iron-scavening system and a subtance stimulating root hair production. Molecullar Plant-Microbe Interaction 3:358-365.

Hadwiger L, Fristenski B, Riggleman R (1984). Chitin, chitosan and related enzymes. In: Fikakis JP, Ed. Academic Press Inc., Orlando FL.

Helmenstine AM (2020). Vitamin C determination by iodine titration. ThoughtCo, Aug. 27, 2020,

Hernández C, Águila E, Flores O, Viveros E, Ramos E (2009). Obtaining and characterizing chitosan from shrimp exoskeletons. Superficies y Vacío 22(3):57-60.

Hewajulige I, Sultanbawa Y, Wijeratnam R, Wijesundara R (2009). Mode of action of chitosan coating on anthracnose disease control in papaya. Phytoparasitica 37(5):437-444.

Ince M, Ince OK (2017). An overview of adsorption technique for heavy metal removal from water/wastewater: a critical review. International Journal of Pure and Applied Sciences 3(2):10-19.

Jefferies R (1981). Osmotic adjustment and the response of halophytic plants to salinity. Bioscience 31:42-48.

Kapulnik Y, Okon Y, Kigel J (1981). Effects of temperature, nitrogen fertilization and plant age on nitrogen fixation by Setaria italica inoculated with Azospirillum brasilense (strain cd). Plant Phisiology 68:340-343.

Khan MH, Singha KLB, Panda SK (2002). Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl salinity stress. Acta Physiologiae Plantarum 24:145-148.

Kathe R, Holger B, Pillen K, Rabenstein F, Nothnagel T (2019). Development of a bioassay to assess resistance to Fusarium oxysporum (Schlecht.) in asparagus (Asparagus officinalis L.). Journal of Phytopathology 167(10):558-566.

Liu J, Tian S, Meng X, Xu Y (2007). Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology 44(3):300-306.

López-Corona BE, Mondaca I, Gortáres P, Peña J, Meza MJ, Balderas J, Vargas J, Rueda Puente EO (2019a). Technique of cutting in agriculture: an alternative at the vanguard. Tropical and Subtropical Agroecosystems 22(2).

López-Corona BE, Mondaca I, Gortáres P, Meza M, Balderas J, Rueda Puente E (2019b). Rooting of Salicornia bigelovii (Torr.) cuttings by chitosan as a by-product of marine origin. Terra Latinoamericana

Madrid LA (1988). Utilización de la paja de halófitas en rumiantes. [Use of halophyte straw in ruminants]. II Congreso Nacional sobre Halófitas. Obregón, Sonora, pp 59-66.

Mármol Z, Gutiérrez E, Páez G, Ferrer J, Rincón M (2004). Thermoalkaline deacetylation of chitin from shrimp shells. Multiciencias 4(2):1-9.

Molina ZJ, Colina M, Rincón D, Vargas J (2017). Effect of the use of chitosan in the improvement of rice cultivation (Oryza sativa L. var. sd20a). Revista de Investigación Agraria y Ambiental 8(2):151-165.

Nahidh S, Hakeem A (1991). Response of wheat to dual inoculation with VA-Micorrhiza and Azospirillum, fertilized with NPK and irrigated with sewage effluent. Arid Soil Research and Rehabilitation 5:83-96.

Neith APL (2010). Biotechnological extraction of chitin for the production of chitosans: characterization and application. Food and Nutrition. Université Claude Bernard - Lyon I; Université autonome métropolitaine (Universidad Autónoma Metropolitana) (Iztapalapa). Español.

Nithin KM, Madaiah D, Dinesh KM, Dhananjaya BC, Shivakumar BS, Sahana BJ (2020). Effect of chitosan application on growth and yield attributes of strawberry (Fragaria × ananassa Duch.) under naturally ventilated polyhouse. Journal of Pharmacognosy and Phytochemistry 9(5):1117-1120.

Peña-Datoli M, Hidalgo C, González V, Alcántar E, Etchevers J (2016). Coating of corn (Zea mays L.) seeds with chitosan and sodium alginate and its effect on root development. Agrociencia 50(8):1091-1106.

Quilambaqui JMA (2005). Isolation and identification of Fusarium spp associated with the decline of asparagus (Asparagus officinalis L.) in five municipalities of Guanajuato, Mexico. Revista Tecnológica ESPOL 18(1):135-140.

Reddy M, Arul J, Angers P, Couture L (1999). Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. Journal of Agricultural and Food Chemistry 47(3):67-72.

Renganathan P, Borboa-Flores J, Rosas-Burgos E, Cárdenas JL, Murillo-Amador B, Ortega-García J, Rueda-Puente EO (2018). Inoculation of nitrogen-fixing halobacteria in the contribution to tolerance to salt stress in bean tepary. Revista Mexicana de Ciencias Agrícolas 20:4289-4300.

Reyes Pérez J, Enríquez-Acosta E, Ramírez-Arrebato M, Zúñiga VE, Lara-Capistrán V, Hernández-Montiel, L (2020). Effect of chitosan on variables of tomato growth, yield and nutritional content. Revista Mexicana Ciencias Agrícolas 11(3):457-464.

Djalali F, Katja W, Jan G, Rita G, Rita Z (2020). Species-specific impact of Fusarium infection on the root and shoot characteristics of Asparagus. Pathogens 9(6):509.

Ruan S, Xue Q (2002). Effects of chitosan coating on seed germination and salt-tolerance of seedlings in hybrid rice (Oryza sativa L.) Acta Agronomica Sinica 28(6):803-808.

SAGARPA (2017). Fecha de publicación. Querétaro Qro., lunes 30 de enero de 2017.

Sas Institute (1996). SAS/STAT user’s guide. Version 6.12 SAS, Institute, Cary, N.C. U.S.A.

Sato N, Murata N (1988). Membrane lipids. Methods in Enzimology 167:251-259.

Shao C, Hu J, Song W, Hu W (2005). Effects of seed priming with chitosan solutions of different acidity on seed germination and physiological characteristics of maize seedling. Journal of Zhejiang University. Agriculture and Life Science 31(6):705-708.

Shehata SA, Fawzy ZF, El-Ramady HR (2012). Response of cucumber plants to foliar application of chitosan and yeast under greenhouse conditions. Australian Journal of Basic and Applied Sciences 6(4):63-71.

Snedecor G (1956). Statistical methods applied to experiments in agriculture and biology. The Iowa State College Press, Ames, Iowa, USA, pp 237-290.

Sokal R, James R (1988). Biometry: the principles and practice of statistics in biological research, 3nd edn. Freeman & Co, San Francisco, CA.

Tabassum B, Khan A, Tariq M, Ramzan M, Iqbal Khan MS, Shahid N, Aaliya K (2017). Bottlenecks in commercialization and future prospects of PGPR. Applied Soil Ecology 121:102-117.

Tarrand JJ, Krieg NR, Dobereiner J (1978). A taxonomy study of the Spirillum lipoferum group, with descriptions of a new genus, Azospiriflum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Canadian Journal of Microbiology 24:967-980.

Vargas TG, Taquez Bueno L (2018). Obtención y evaluación del Quitosano a nivel laboratorio para la depuración de aguas residuales industriales provenientes de un laboratorio cosmético. [Obtaining and evaluating Chitosan at the laboratory level for the treatment of industrial wastewater from a cosmetic laboratory]. Universidad Nacional Abierta y a Distancia – UNAD, Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente, Bogotá, Colombia. Tesis de ingeniería.

Vera AK, Parismoreno RL (2017). Uso de quitosano en medios de cultivo para el desarrollo en la propagación in vitro de la Orquídea Cattleya spp. [Use of chitosan in culture media for the in vitro propagation of Orchid Cattleya spp. University of Guayaquil, Guayaquil Ecuador]. Universidad de Guayaquil, Guayaquil Ecuador. Tesis de ingeniería.

Waśkiewicza A, Irzykowskab L, Bocianowskic J, Karolewskib Z, Weberb Z, Piotr G (2013). Fusariotoxins in asparagus – their biosynthesis and migration. Food Additives and Contaminants: Part A 30(7):1332-1338.

Will ME, Sylvia DM (1990). Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats. Applied and Environmental Microbiology 56(7):2073-2079.

Xu Q, Guo SR, Li L, An YH, Shu S, Sun J (2016). Proteomics analysis of compatibility and incompatibility in grafted cucumber seedlings. Plant Physiology and Biochemistry 105:21-28.

Zhou Y, Yang Y, Qi Zhang Z, Wang X, Hu X (2002). Effects of chitosan on some physiological activity in germinating seed of peanut. Peanut Science and Technology 31:22-25.




How to Cite

ORTEGA-GARCÍA, J. ., HOLGUÍN-PEÑA, R. J. ., PRECIADO-RANGEL, P. ., GUILLÉN-ENRÍQUEZ, R. R. ., ZAPATA-SIFUENTES, G. ., NAVA-SANTOS, J. M. ., & RUEDA-PUENTE, E. O. (2021). Bacillus amyloliquefaciens as a halo-PGPB and chitosan effects in nutritional value and yield production of Asparagus officinalis L. under Sonora desert conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 12414.



Research Articles
DOI: 10.15835/nbha49312414

Most read articles by the same author(s)

<< < 1 2