Exploring mycorrhizal fungi in walnut with a focus on physiological roles

Authors

  • Wen-Ya MA Yangtze University, College of Horticulture and Gardening, Jingzhou, Hubei 434025 (CN)
  • Qiang-Sheng WU Yangtze University, College of Horticulture and Gardening, Jingzhou, Hubei 434025; University of Hradec Kralove, Faculty of Science, Department of Chemistry, Hradec Kralove 50003 (CN) http://orcid.org/0000-0002-3405-8409
  • Yong-Jie XU Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000;Hubei Academy of Forestry, Wuhan, Hubei 430075 (CN)
  • Kamil KUČA University of Hradec Kralove, Faculty of Science, Department of Chemistry, Hradec Kralove 50003 (CZ)

DOI:

https://doi.org/10.15835/nbha49212363

Keywords:

endophytic fungi, mycorrhiza, nut trees, symbiosis, truffle

Abstract

Walnuts are an economically important forest tree used for timber and nut production, and the nut of fruits is rich in various nutrients, becoming one of the four important nuts in the world. Walnuts have deep roots, which can be colonized by either ectomycorrhizal fungi or arbuscular mycorrhizal fungi in the soil. These mycorrhizal fungi form beneficial symbioses in roots of walnut. A large number of ectomycorrhizal fungi have been identified, whilst Boletus edulis, Calvatia uiacina, and Cantharelles cibarius isolated from walnut orchards stimulated plant growth and gave the capacity of stress tolerance in walnut. Moreover, Carya illinoensis is a very good host plant for commercial production of truffles, especially Tuber indicum. In addition, ectomycorrhizal fungi accelerate plant growth and enhance potential stress tolerance of walnuts. Inoculation with arbuscular mycorrhizal fungi also showed the improvement of plant growth and nutrient acquisition of walnut, the enhancement of drought tolerance in walnut, nutrient redistribution under walnut interplanting patterns, and the delivery of juglone by mycorrhizal hyphae. A culturable in vitro arbuscular mycorrhizal like fungus Piriformospora indica also enhanced salt tolerance of walnut plants. In this mini-review, the physiological roles of mycorrhizal fungi, including arbuscular mycorrhizal fungi, ectomycorrhizal fungi and arbuscular mycorrhizal like fungus (P. indica) on walnut plants are summarized, and future outlooks in the field are proposed.

References

Achatz M, Morris EK, Müller F, Hilker M, Rillig MC (2014a). Soil hypha mediated movement of allelochemicals: arbuscular mycorrhizae extend the bioactive zone of juglone. Functional Ecology 28:1020-1029. https://doi.org/10.1111/1365-2435.12208

Achatz M, Michaela C, Rillig MC (2014b). Arbuscular mycorrhizal fungal hyphae enhance transport of the allelochemical juglone in the field. Soil Biology and Biochemistry 78:76-82. https://doi.org/10.1016/j.soilbio.2014.07.008

Ahmad T, Khan T, Alamgeer (2020). Juglone as antihypertensive agent acts through multiple vascular mechanisms. Clinical and Experimental Hypertension 42:335-344. https://doi.org/10.1080/10641963.2019.1665674

Alben AO, Boggs HM (1936). Zinc content of soils in relation to pecan rosette. Soil Science 41:329-332. https://doi.org/10.1097/00010694-193605000-00002

Behrooz A, Vahdati K, Rejali F, Lotfi M, Sarikhani S, Leslie C (2019). Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience 54:1087-1092. https://doi.org/10.21273/HORTSCI13961-19

Bender DA, Bender AE (2005). A dictionary of food and nutrition. Oxford University Press, Oxford. https://doi.org/10.1108/09504120510613328

Binju M, Padilla MA, Singomat T, Kaur P, Rahmanto YS, Cohen PA, Yu Y (2018). Mechanisms underlying acquired platinum resistance in high grade serous ovraian cancer-a mini review. Biochimica et Biophysica Acta 1863:371-378. https://doi.org/10.1016/j.bbagen.2018.11.005

Bonito G, Brenneman T, Vilgalys R (2011). Ectomycorrhizal fungal diversity in orchards of cultivated pecan (Carya illinoinensis; Juglandaceae). Mycorrhiza 21:601-612. https://doi.org/10.1007/s00572-011-0368-0

Brundrett MC (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 320:37-77. http://doi.org/10.1007/s11104-008-9877-9

Chen Y (2018). Effects of arbuscular mycorrhizal fungi on the infection and growth of iris seedlings. The Thirteenth International Conference on China Urban Water Development and Expo of New Technologies and Facilities. Chongqing, China, pp 160-163.

Cheng WJ, Xu YJ, Huang GM, Rahman MM, Xiao ZY, Wu QS (2020). Effects of five mycorrhizal fungi on biomass and leaf physiological activities of walnut. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48:2021-2031. http://doi.org/10.15835/48412144

Dolcet-Sanjuan R, Claveria E, Camprubí A, Estaún V, Calvet C (1996). Micropropagation of walnut trees (Juglans regia L) and response to arbuscular mycorrhizal inoculation. Agronomie 16:639-645. http://doi.org/10.1051/agro:19961008

Durall DM, Gamiet S, Simard SW, Kudrna L, Sakakibara SM (2006). Effects of clearcut logging and tree species composition on the diversity and community composition of epigeous fruit bodies formed by ectomycorrhizal fungi. Canadian Journal of Botany 84:966-980. http://doi.org/10.1139/B06-045

Gao Y, LiangY, Dong Z, Li HL, Liu BH, Fan XL, Zhou XY (2019). Effects of Piriformospora indica on the growth of walnut seedlings under salt stress. Journal of Arid Land Resources and Environment 33:194-198. http://dio.org/10.13448/j.cnki.jalre.2019.247

Ge W, Dong CB, Zhang ZY, Han,YF, Liang ZQ (2021). Symbiotic interaction between ectomycorrhizal fungi and endobacteria:a review. Microbiology China 1-15. http://doi.org/10.13344/j.microl.china.201155

Ge ZW, Brenneman T, Bonito G, Smith ME (2017). Soil pH and mineral nutrients strongly influence truffles and other ectomycorrhizal fungi associated with commercial pecans (Carya illinoinensis). Plant and Soil 418:493-505. http://doi.org/10.1007/s11104-017-3312-z

Haug I, Weber R, Oberwinkler F, Tschen J (1991). Tuberculate mycorrhizas of Castanopsis borneensis King and Engelhardtia roxburghiana Wall. New Phytologist 117:25-35. https://doi.org/10.1111/j.1469-8137.1991.tb00941.x

He HZ, Li Q, Liu YY, He YS, Zhang YW (2013a). Research on growth of ectomycorrhizal fungi from Juglans regia L. forest. Guangdong Agricultural Sciences 40:71-72. http://doi.org/10.16768/j.issn.1004-874x.2013.20.007

He HZ, Liu YY, Song JX, He YS, Tang J, Zhang YW (2013b). Research on disseminated technology of ectomycorrhizal fungi to Juglans regia L. Guizhou Science 31:72-74. http://doi.org/CNKI:SUN:GZKX.0.2013-02-016

He JD, Chi GG, Zou YN, Shu B, Wu QS, Srivastava AK, Kuča K (2020). Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Applied Soil Ecology 154:103592. http://doi.org/10.1016/j.apsoil.2020.103592

Huang GM, Zou YN, Wu QS, Xu YJ, Kuča K (2020). Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant, Soil and Environment 66:295-302. http://doi.org/10.17221/240/2020-PSE

Ishida TA, Nara K, Hogetsu T (2007). Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytologist 174:430-440. http://doi.org/10.1111/j.1469-8137.2007.02016.x

Jin L, Zhang H, Li B (2004). Mycorrhizal studies in China. Chinese Journal Applied and Environmental Biology 104:515-520. http://doi.org/CNKI:SUN:YYHS.0.2004-04-026

Ju XH, Xu HY, Li Q, Chen S, Fang F (2020). Juglone inhibits epithelial mesenchymal transition of ovarian cancer cells by regulating NF-κB/Snail pathway. Journal of Jilin Medical College 41:241-244. http://doi.org/10.13845/j.cnki.issn1673-2995.2020.04.001

Kao CC, Kung PH, Tai CJ, Tsai MC, Wu CC (2021). Juglone prevents human platelet aggregation through inhibiting akt and protein disulfide isomerase. Phytomedicine 82:153449. http://doi.org/10.1016/J.PHYMED.2020.153449

Li L, Wu HQ, Ma CY, Ren L, Wang LX, Qi ST (2015). Growth promotion and salt tolerance induction by Piriformospora indica colonization in Medicago truncatula. Microbiology China 42:1492-1500. http://doi.org/10.13344/j.microbiol.china.140749

Li RB, Jing YB, Mou JH, Ning DL, Li YP, Li SL, Li SH (2021). Correlation between arbuscular mycorrhizal in walnut orchards under different intercropping with soil factors. Journal of West China Forestry Science 50:71-78, 84. http://doi.org/10.16473/j.cnki.xblykx1972.2021.01.010

Lin SS, Sun XW, Wang XJ, Dou CY, Li YY, Luo QY, Sun L, Jin L (2013). Mycorrhizal studies and their application prospects in China. Acta Prataculturae Sinica 22:310-325. http://doi.org/CNKI:SUN:CYXB.0.2013-05-041

Liu HZ, Chi LH, Tu LKE, Li Y (2002). AM (arbuscular-mycorrhizas) fungi resources and their application in fruit trees. Journal of Jilin Agricultural University 24:50-55. http://doi.org/10.13327/j.jjlau.2002.02.015

Ma HY, Zhang WE, Pan XJ, Wei Q, Huang W (2019). Walnut allelopathy and its application prospects: a review. Jiangsu Agricultural Sciences 47:57-63. http://doi.org/10.15889/j.issn.1002-1302.2019.20.013

Ma SR, Shi MY, Li W, He Q, Cui HJ (2020). Research progress on ectomycorrhizal fungi of Salicaceae. Modern Agricultural Science and Technology 10:100-102. http://doi.org/CNKI:SUN:ANHE.0.2020-10-065

Melichar MW, Garrett HE, Cox GS (1986). Mycorrhizae benefit growth and development of Eastern black walnut seedlings. Northern Journal of Applied Forestry 3:151-153. http://doi.org/10.1093/njaf/3.4.151

Meng LL, He JD, Zou YN, Wu QS, Kuča K (2020). Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange. Plant, Soil and Environment 66:183-189. http://doi.org/10.17221/100/2020-PSE

Mortier E, Lamotte O, Martin-Laurent F, Recorbet G (2020). Forty years of study on interactions between walnut tree and arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development 40:43. http://doi.org/10.1007/s13593-020-00647-y

Pohjanen J, Koskimäki JJ, Sutela S, Ardanov P, Suorsa M, Niemi K, Sarjala T, Häggman H, Pirttilä AM (2014). Interaction with ectomycorrhizal fungi and endophytic Methylobacterium affects nutrient uptake and growth of pine seedlings in vitro. Tree Physiology 34:993-1005. http://doi.org/10.1093/treephys/tpu062

Ponder F (1984). Growth and mycorrhizal development of potted white ash and black walnut fertilized by two methods. Canadian Journal of Botany 62:509-512. http://doi.org/10.1139/b84-075

Querejeta JI, Egerton-Warburton LM, Allen MF (2003). Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134: 55-64. http://doi.org/10.1007/s00442-002-1078-2

Rice EL (1984). Allelopathy. 2nd ed. Academic Press, New York, pp. 309-315.

Rivero SHT, Moorillon VGN, Borunda EO (2009). Growth, yield, and nutrient status of pecans fertilized with biosolids and inoculated with rizosphere fungi. Bioresource Technology 100:1992-1998. http://doi.org/10.1016/j.biortech.2007.12.078

Shi RH, Niu LJ (2018). Chinese Medicine Classic Diet. Shanghai Science Popularization Press, Shanghai, China.

Smith SE, Read FD (2008). Mycorrhizal Symbiosis. 3rd edition. Academic Press, San Diego. http://doi.org/10.2136/sssaj2008.0015br

Song FQ, Yang GT, Meng FR, Tian XJ, Dong AR, Wu QY (2005). The effects of arbuscular mycorrhizal fungi on the radicular system of Populus ussuriensis seedlings. Journal of Nanjing Forestry University (Natural Sciences Edition) 29:35-39. http://doi.org/10.1360/biodiv.050121

Tedersoo L, Brundrett MC (2017). Evolution of ectomycorrhizal symbiosis in plants. In: Tedersoo L (eds) Biogeography of Mycorrhizal Symbiosis. Ecological Studies (Analysis and Synthesis), vol 230. Springer, Cham., pp 407-467. https://doi.org/10.1007/978-3-319-56363-3_19

Tuinen D, Tranchand E, Hirissou F, Wipf D, Courty PE (2020). Carbon partitioning in a walnut-maize agroforestry system through arbuscular mycorrhizal fungi. Rhizosphere 15:100230. http://doi.org/10.1016/j.rhisph.2020.100230

Twieg BD, Durall DM, Simard SW (2007). Ectomycorrhizal fungal succession in mixed temperate forests. New Phytologist 176:437-447. http://doi.org/10.1111/j.1469-8137.2007.02173.x

Vahdati K, Lotfi N, Kholdebarin B, Hassani D, Amiri R, Mozaffari MR, Leslie C (2009). Screening for drought-tolerant genotypes of Persian walnuts (Juglans regia L.) during seed. HortScience 44:1815-1819. http://doi.org/10.1007/s10658-009-9505-4

Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Franken P (1998). Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896-903. http://doi.org/10.2307/3761331

Wang HL, Zheng ZR, Zheng XD (2017). Effect of Piriformospora indica on the growth and nutritional quality of chinese celery (Apium graveolens L). Journal of Chinese Institute of Food Science and Technology 17:124-130. http://doi.org/10.16429/j.1009-7848.2017.06.017

Wang J (2015) Study on the efficienty of inoculation with arbuscular mycorrhizal fungi to walnut seeding. Master’s thesis. Yangtze University, Jingzhou, China.

Wu QS, Srivastava AK, Zou YN (2013). AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae 164:77-87. http://doi.org/10.1016/j.scienta.2013.09.010

Wu QS, Srivastava AK, Zou YN, Malhotra SK (2017). Mycorrhizas in citrus: Beyond soil fertility and plant nutrition. Indian Journal of Agricultural Sciences 87:427-443.

Xie MM, Chen SM, Zou YN, Srivastava AK, Rahman MM, Wu QS, Kuča K (2021). Effects of Rhizophagus intraradices and Rhizobium trifolii on growth and N assimilation of white clover. Plant Growth Regulation 93:311-318. http://doi.org/10.1007/s10725-020-00689-y

Yang M, Liu CY, Tang P, Han D, Zheng LY, Chen B, Xiao YJ, Yang XF (2015). Synthetic mycorrhizal technique of tuber indicum inoculated with American hickory. Jiangsu Agricultural Sciences 43:267-269. http://doi.org/10.15889/j.issn.1002-1302.2015.09.089

Yang L, Zou YN, Tian ZH, Wu QS, Kuča K (2021). Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Scientia Horticulturae 277:109815. http://doi.org/10.1016/J.SCIENTA.2020.109815

Zhang CH, Shen YB, Yin WL, Pan QH, Zhao SJ (2002). Effect of salt stress on photosynthesis and growth of four tree species seedings. Scientia Silvae Sinicae 38:27-31. http://doi.org/CNKI:SUN:LYKE.0.2002-02-005

Zhang F, Wang P, Zou YN, Wu QS, Kuča K (2019). Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science 65:1316-1330. http://doi.org/10.1080/03650340.2018.1563780

Zou J (2019). Effects of different Tuber infected Carya illinoensis on plant growth and root microecology. Master’s thesis. Sichuan Agricultural University, Chengdu, China. http://doi.org/10.27345/d.cnki.gsnyu.2019.000206

Zou YN, Wu QS, Kuča K (2021a). Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biology 23(S1):50-57. https://doi.org/10.1111/PLB.13161

Zou YN, Zhang F, Srivastava AK, Wu QS, Kuča K (2021b). Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. Frontiers in Plant Science 11:600792. https://doi.org/10.3389/FPLS.2020.600792

Downloads

Published

2021-06-18

How to Cite

MA, W.-Y., WU, Q.-S., XU, Y.-J., & KUČA, K. (2021). Exploring mycorrhizal fungi in walnut with a focus on physiological roles. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(2), 12363. https://doi.org/10.15835/nbha49212363

Issue

Section

Review Articles
CITATION
DOI: 10.15835/nbha49212363

Most read articles by the same author(s)

1 2 3 > >>