Foliar application of zinc oxide nanoparticles and grafting improves the bell pepper (Capsicum annuum L.) productivity grown in NFT system

Authors

  • José G. URESTI-PORRAS Antonio Narro Autonomous Agrarian University, PhD of Science in Protected Agriculture, Antonio Narro 1923, 25315, Saltillo, Coahuila (MX)
  • Marcelino CABRERA-DE-LA FUENTE Antonio Narro Autonomous Agrarian University, Department of Horticulture, Antonio Narro 1923, 25315, Saltillo, Coahuila (MX)
  • Adalberto BENAVIDES-MENDOZA Antonio Narro Autonomous Agrarian University, Department of Horticulture, Antonio Narro 1923, 25315, Saltillo, Coahuila (MX)
  • Alberto SANDOVAL-RANGEL Antonio Narro Autonomous Agrarian University, Department of Horticulture, Antonio Narro 1923, 25315, Saltillo, Coahuila (MX)
  • Alejandro ZERMEÑO-GONZALEZ Antonio Narro Autonomous Agrarian University, Department of Irrigation and Drainage, Antonio Narro 1923, 25315, Saltillo, Coahuila (MX)
  • Raúl I. CABRERA Rutgers University, Department of Plant Biology, Rutgers Agricultural Research and Extension Center (RAREC), Bridgeton, NJ 08302 (US)
  • Hortencia ORTEGA-ORTÍZ Center for Investigation of Applied Chemistry, Enrique Reyna H. No. 140, San José de los Cerritos, 25294, Saltillo, Coahuila (MX)

DOI:

https://doi.org/10.15835/nbha49212327

Keywords:

histology, hydroponic, micromorphology, physiology, productivity

Abstract

The bell pepper (Capsicum annuum L.) is a food vegetable with a high nutritional intake, with rich content in vitamins, minerals and antioxidants. In this study, using nutrient film technique (NFT) system, the effect of the zinc oxide nanoparticles on the micromorphology, histology, physiology and production of the grafted pepper was evaluated. The treatments used were grafted and non-grafted plants, four concentrations (0, 10, 20, 30 mg L-1) of zinc oxide nanoparticles, and the experience was organized in a completely randomized design. An increase in grafted plants was observed in the weight, number and size of fruits in 18.1%, 21.8% and 9.6%, the concentration 30 mg L-1 of nanoparticles statistically affected the weight, number and size 46.9%, 47.7% and 18% compared to the control. The interaction with grafted plants and the treatment of 30 mg L-1 of zinc oxide nanoparticles increased fruit weight, number of fruits and size by 62.60%, 57.69% and 29.17% compared to plants without grafting and the control treatment. These results indicate that the use of grafts and zinc oxide nanoparticles could be used in bell pepper production to increase yield.

References

Adhikari T, Kundu S, Rao AS (2016). Zinc delivery to plants through seed coating with nano-zinc oxide particles. Journal of Plant Nutrition 39(1):136-146. https://doi.org/10.1080/01904167.2015.1087562

Albornoz F, Pérez-Donoso AG, Leigh Urbina J, Monasterio M, Gómez M, Steinfort Ú (2020). Nitrate transport rate in the xylem of tomato plants grafted onto a vigorous rootstock. Agronomy 10(2):182. https://doi.org/10.3390/agronomy10020182

Amiri ME, Fallahi E, Safi-Songhorabad M (2014). Influence of rootstock on mineral uptake and scion growth of ‘Golden Delicious’ and ‘Royal Gala’ apples. Journal of Plant Nutrition 37:16-29. https://doi.org/10.1080/01904167.2013.792838

Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2019). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology 4(10):634-641. https://doi.org/10.1038/nnano.2009.242

Ayala-Arrelola JC, Barrientos-Preiego AF, Colinas-León MT, Sahagún-Castellanos, Reyes-Alemán JC (2010). Relaciones injerto-interinjerto y caracteristícas anatómicas y fisiológicas de la hoja de cuatro genotipos de aguacate [Graft-intergraft relationships and anatomical and physiological characteristics of the leaf of four avocado genotypes]. Revista Chapingo Serie Horticultura 16(2):147-154. https://doi.org/10.5154/r.rchsh.2010.16.018

Baron D, Amaro ACE, Macedo AC, Boaro CSF, Ferreira G (2018). Gas exchange, growth and ion concentration. Revista Brasileira de Botanica 41(1):219-225. https://doi.org/10.1007/s40415-017-0421-0

Brenes L, Jimenez MF (2016). Manual de producción hidropónica para hortalizas de hoja en sistema NFT (Nutrient Film Technique) [ Handbook of hydroponic production for leafy vegetables in NFT system (Nutrient Film Technique)]. (1st Ed). Cartago, Costa Rica. Tecnología de Costa Rica.

Camposeco-Montejo N, Robledo-Torres V, Ramírez-Godina F, Valdez-Aguilera LA, Cabrera-de-la-Fuente M, Mendoza-Villareal R (2018). Efecto del portainjerto en el índice y densidad estomática de pimiento morrón Capsicum annuum var. annuum [Effect of the rootstock on the stomatal index and density of bell pepper Capsicum annuum var. annuum]. Ecosistemas y Recursos Agropecuarios 5(15):555-561. https://doi.org/10.19136/era.a5n15.1539

Cooper A (1979). The ABC of NFT. Nutrient film technique. Grower Books.

Dabirian S, Miles CA (2017). Antitranspirant application increases grafting success of watermelon. HortTechnology 27(4):494-501. https://doi.org/10.21273/HORTTECH03739-17

Du W, Yang J, Peng Q, Liang X, Mao H (2019). Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 227:109-116. https://doi.org/10.1016/j.chemosphere.2019.03.168

Elizabath A, Bahadur V, Misra P, Prasad VM, Thomas T (2017). Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of carrot (Daucus carota L.). Journal of Pharmacognosy and Phytochemistry 6(4):1266-1269.

Ergun V, Aktas H (2018). Effect of grafting on yield and fruit quality of pepper (Capsicum annuum L.) grown under open field conditions. Scientific Papers Series B-Horticulture 62:463-466.

Espinoza STL, Peña AR, Valqui NCV, Chávez JCN (2019). Comportamiento productivo de 11 variedades de lechuga (Lactuca sativa L.) en sistema hidropónico NFT recirculante (Chachapoyas–Amazonas) [Productive performance of 11 lettuce varieties in a recirculating NFT hydroponic system]. Revista de Investigación de Agroproducción Sustentable 2(1):50-56. https://doi.org/10.25127/aps.20181.384

FAO (2019). Food and Agriculture Organization of de United Nations. Retrieved 2020 September 12 from http://www.fao.org/faostat/es/#data/QC

FAOSTAT (2019). Food and Agriculture Organization of de United Nations. Retrieved 2020 September 20 from http://www.fao.org/faostat/es/#data/PP

Ganguly S, Praveen PK, Para PA, Sharma V (2017). Medicinal Properties of chilli pepper in human diet: an editorial. ARC Journal of Public Health and Community Medicine 2(1):6-7. https://doi.org/10.20431/2456-0596.0201002

García-López, JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldivar RH, Barriga-Castro ED, Vázquez-Alvarado R, Zavala-García F (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8(8):254. https://doi.org/10.3390/plants8080254

Hajra A, Mondal NK (2017). Effects of ZnO and TiO2 nanoparticles on germination, biochemical and morphoanatomical attributes of Cicer arietinum L. Energy, Ecology and Environment 2(4):277-288. https://doi.org/10.1007/s40974-017-0059-6

Hernández F (1984). Manual de Laboratorio de Citología y Citogenética [Cytology and Cytogenetics Laboratory Manual]. (1st Ed). Saltillo, Coahuila, México. Universidad Autónoma Agraria Antonio Narro.

Huang W, Liao S, Lv H, Khaldun ABM, Wang Y (2015). Characterization of the growth and fruit quality of tomato grafted on a woody medicinal plant, Lycium chinense. Scientia Horticulturae 197:447-453. https://doi.org/10.1016/j.scienta.2015.10.005

Kumar P, Lucini L, Rouphael Y, Cardarelli M, Kalunke RM, Colla G (2015). Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Frontiers in Plant Science 6:477. https://doi.org/10.3389/fpls.2015.00477

Kumar UJ, Bahadur V, Prasad VM, Mishra S, Shukla PK (2017). Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of strawberry (Fragaria x ananassa Duch) cv. Chandler. International Journal of Current Microbiology and Applied Sciences 6(8):2440-2445. https://doi.org/10.20546/ijcmas.2017.608.288

Lee JM (1994). Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience 29(4):235-239. https://doi.org/10.21273/hortsci.29.4.235

Love DC, Fry JP, Li X, Hill ES, Genello L, Semmens K, Thompson RE (2015). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 435:67-74. https://doi.org/10.1016/j.aquaculture.2014.09.023

Mantoan LPB, de Almeida LFR, Macedo AC, Ferreira G, Boaro CSF (2016). Photosynthetic adjustment after rehydration in Annona emarginata. Acta Physiologiae Plantarum 38(6):1-11. https://doi.org/10.1007/s11738-016-2171-1

Martínez-Andújar C, Albacete A, Pérez-Alfocea F (2018). Rootstocks for increasing yield stability and sustainability in vegetable crops. In: XXX International Horticultural Congress IHC2018: II International Symposium on Soilless Culture and VIII International 1273:449-470. https://doi.org/10.17660/ActaHortic.2020.1273.58

Mazzaglia A, Fortunati E, Kenny JM, Torre L, Balestra GM (2017). Nanomaterials in plant protection. In: Nanotechnology in Agriculture and Food Science 113-134. https://doi.org/10.1002/9783527697724.ch7

Melnyk CW, Schuster C, Leyser O, Meyerowitz EM (2015). A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Current Biology 25(10):1306-1318. https://doi.org/10.1016/j.cub.2015.03.032

Orsini F, Sanoubar R, Oztekin GB, Kappel N, Tepecik M, Quacquarelli C, Gianquinto G (2013). Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. Functional Plant Biology 40(6):628-636. https://doi.org/10.1071/FP12350

Paolo Miglietta P, De Leo F, Toma P (2017). Environmental Kuznets curve and the water footprint: An empirical analysis. Water and Environment Journal 31(1):20-30. https://doi.org/10.1111/wej.12211

Penella C, Nebauer SG, López-Galarza S, Quiñones A, San Bautista A, Calatayud Á (2017). Grafting pepper onto tolerant rootstocks: An environmental-friendly technique overcome water and salt stress. Scientia Horticulturae 226:33-41. https://doi.org/10.1016/j.scienta.2017.08.020

Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12):1584-1594. https://doi.org/10.1039/c5mt00168d

Riga P (2015). Effect of rootstock on growth, fruit production and quality of tomato plants grown under low temperature and light conditions. Horticulture, Environment, and Biotechnology 56(5):626-638. https://doi.org/10.1007/s13580-015-0042-0

Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry 135:160-166. https://doi.org/10.1016/j.plaphy.2018.12.005

Rouphael Y, Kyriacou MC, Colla G (2018). Vegetable grafting: A toolbox for securing yield stability under multiple stress conditions. Frontiers in Plant Science 8:2255. https://doi.org/10.3389/fpls.2017.02255

Saadati S, Moallemi N, Mortazavi SMH, Seyyednejad SM (2016). Foliar applications of zinc and boron on fruit set and some fruit quality of olive. Crop Research 29(2):53 https://doi.org/10.5958/2229-4473.2016.00021.5

Saadati S, Moallemi N, Mortazavi SMH, Seyyednejad SM (2016) Foliar applications of zinc and boron on fruit set and some fruit quality of olive. Vegetos 29(2):53-57. doi: 10.5958/2229-4473.2016.00021.5

Salehi R, Kashi A, Lee JM, Babalar M, Delshad M, Lee SG, Huh YC (2010). Leaf gas exchanges and mineral ion composition in xylem sap of iranian melon affected by rootstocks and training methods. HortScience 45(5):766-770. https://doi.org/10.21273/HORTSCI.45.5.766

Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Dimkpa C (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research 17(2):1-21. https://doi.org/10.1007/s11051-015-2907-7

SIAP (2019). Servicio de Información Agroalimentaria y Pesquera [Agri-Food and Fisheries Information Service]. Retrieved 2020 October 20 from https://nube.siap.gob.mx/cierreagricola/

Soteriou GA, Kyriacou MC (2015). Rootstock-mediated effects on watermelon field performance and fruit quality characteristics. International Journal of Vegetable Science 21(4):344-362. https://doi.org/10.1080/19315260.2014.881454

Steiner AA (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil 15(2):134-154. https://doi.org/10.1007/BF01347224

Velasco-Alvarado MDJ, Lobato-Ortiz R, García-Zavala JJ, Castro-Brindis R, Cruz-Izquierdo S, Corona-Torres T (2019). Injertos interespecíficos entre Solanum lycopersicum L. y S. habrochaites Knapp & Spooner como alternativa para incrementar el rendimiento de fruto [Interspecific grafts between Solanum lycopersicum L. and S. habrochaites Knapp & Spooner as an alternative to increase fruit yield]. Agrociencia 53(7):1029-1042.

Vera-Guzmán AM, Aquino-Bolaños EN, Heredia-García E, Carrillo-Rodríguez JC, Hernández-Delgado S, Chávez-Servia JL (2017). Flavonoid and capsaicinoid contents and consumption of Mexican chili pepper (Capsicum annuum L.) landraces. Flavonoids-from biosynthesis to human health. InTechOpen 405-437. https://doi.org/10.5772/68076

Wilkinson (1979). The plant surface (mainly leaf). London: Oxford University pp 97-165.

Xu Q, Guo SR, Li L, An YH, Shu S, Sun J (2016). Proteomics analysis of compatibility and incompatibility in grafted cucumber seedlings. Plant Physiology and Biochemistry 105:21-28. https://doi.org/10.1016/j.plaphy.2016.04.001

Zhu J, Li J, Shen Y, Liu S, Zeng N, Zhan X, Xing B (2020). Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environmental Science: Nano 7(12):3901-3913. https://doi.org/10.1039/D0EN00658K

Downloads

Published

2021-05-25

How to Cite

URESTI-PORRAS, J. G. ., CABRERA-DE-LA FUENTE, M. ., BENAVIDES-MENDOZA, A., SANDOVAL-RANGEL, A., ZERMEÑO-GONZALEZ, A. ., CABRERA, R. I. ., & ORTEGA-ORTÍZ, H. (2021). Foliar application of zinc oxide nanoparticles and grafting improves the bell pepper (Capsicum annuum L.) productivity grown in NFT system. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(2), 12327. https://doi.org/10.15835/nbha49212327

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha49212327

Most read articles by the same author(s)