A proposal for modifying coppicing geometry in order to reduce soil erosion in the forest areas

  • Bartolomeo SCHIRONE Tuscia University, Department of Agriculture and Forest Sciences (DAFNE), San Camillo del Lellis s.n.c., 01100 Viterbo (IT) https://orcid.org/0000-0002-8751-5642
  • Pietro SALVANESCHI Tuscia University, Department of Agriculture and Forest Sciences (DAFNE), San Camillo del Lellis s.n.c., 01100 Viterbo (IT) https://orcid.org/0000-0002-2209-3135
  • Kevin CIANFAGLIONE Université de Lorraine, Faculté des Sciences et Techniques, UMR UL/AgroParisTech/INRAE 1434 Silva, BP 70239, CEDEX 54506 Vandoeuvre-lès-Nancy (FR) https://orcid.org/0000-0002-1336-1468
  • Massimo PECCI Department of Regional Affairs and Autonomies (DARA) – Presidency of the Council of Ministers, Via della Stamperia 8, 00186 Rome (IT)
  • Teodoro ANDRISANO Majella National Park, Via Badia 28, 67039 Sulmona (IT)
  • Federico VESSELLA Tuscia University, Department of Agriculture and Forest Sciences (DAFNE), San Camillo del Lellis s.n.c., 01100 Viterbo (IT) https://orcid.org/0000-0002-0674-345X
  • Andrea PETROSELLI Tuscia University, Department of Economics, Engineering, Society and Business Organisation (DEIM), 01100 Viterbo (IT) https://orcid.org/0000-0003-4943-0928
Keywords: barriers, coppice, mountain slopes, soil erosion, standards

Abstract

A key factor to reduce soil erosion and soil instability is the conservation of forest areas. In the last years, in all Europe, forest logging has increased. The Italian situation is paradigmatic because more than 70% of the broadleaved forests are managed as coppices and new exploitations concerning biomass for energy production have tripled since 2001. The common coppicing method leaves standards uniformly distributed on the ground, but this geometry has proven to not play an effective role in soil erosion control. In this paper, we propose a different method for coppicing geometry, aimed to decrease the soil erosion risk. In particular, the theoretical framework of the model is presented here, employing the USLE framework and discussing a real case study, while the results of the experimental tests, which are in progress, will be discussed in future papers. The theoretical results seem to demonstrate the method’s validity, which is expected to reduce soil erosion amount in the range 29-42%.

Metrics

Metrics Loading ...

References

Altieri V, De Franco S, Lombardi F, Marziliano PA, Menguzzato G, Porto P (2018). The role of silvicultural systems and forest types in preventing soil erosion processes in mountain forests: a methodological approach using cesium-137 measurements. Journal of Soils Sediments 18(12):3378-3387. https://doi.org/10.1007/s11368-018-1957-8

Amanti M, Pecci M (1995). Proposta di una scheda per la raccolta e l’informatizzazione dei dati utili alla classificazione e caratterizzazione degli ammassi rocciosi. [Proposal for the creation of a database for the collection and computerisation of data for the classification and characterisation of rock masses]. Atti IV Convegno dei giovani ricercatori in geologia applicata, Riccione, Quaderni di geologia applicata, 1, 1-8, Pitagora Editrice, Bologna, Italy.

Amorini E, Bruschini S, Cutini A, Di Lorenzo MG, Fabbio G (1998). Intensity of standard release and shoots dynamics in a Turkey oak (Quercus cerris L.) coppicies. First contribution. Annali Istituto Sperimentale Selvicoltura Arezzo 27(1996):105-111.

Baragatti E, Frati L, Chiarucci A (2002-2004). Cambiamenti nella diversità della vegetazione in seguito a diversi tipi di matricinatura in boschi di cerro. [Changes in vegetation diversity as a result of different types of coppicing in turkey oak forests]. Annali Istitituto Sperimentale Selvicoltura 33:39-50.

Bastien Y, Wilhelm GJ (2000). Une sylviculture d'arbres pour produire des gros bois de qualité. [A tree silviculture to produce high quality wood]. Revue Forestière Française 5:407-424.

Bastien Y, Wilhelm GJ (2003). Selvicoltura d’albero: un approccio per la produzione di legname con buone caratteristiche e di grandi dimensioni. [Tree silviculture: an approach to produce good quality and dimension wood]. Sherwood–Foreste e Alberi Oggi 86:5-13.

Battisti C, Marini F (2018). Structural changes in bird communities before and after coppice management practices: a comparison using a diversity/dominance approach. Israel Journal of Ecology and Evolution 64:16-24. https://doi.org/10.1163/22244662-20181033

Battisti C, Romano B (2007). Frammentazione e connettività. Dall'analisi ecologica alla pianificazione ambientale. [Fragmentation and connectivity. From the ecological analysis to the environmental planification]. Città Studi Edizioni, Torino, pp 467.

Bazzoffi P, Ciccarese L, De Meo A, Di Leginio M, Fumanti F, Guerra P, … Trigila A (2013). Linee guida per la valutazione del dissesto idrogeologico e la sua mitigazione attraverso misure e interventi in campo agricolo e forestale. [Guidelines for the evaluation of the Hydrogeological risk and its mitigation trough measures and intervention in agriculture and forest field]. ISPRA. Manuali e Linee Guida 85/2013.

Benavidez R, Jackson B, Maxwell D, Norton K (2018). A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrology and Earth System Sciences 22(11):6059-6086. https://doi.org/10.5194/hess-22-6059-2018

Bernetti G, Del Favero R, Pividori M (2012). Selvicoltura produttiva. Manuale pratico. [Productive silviculture. Practice manual]. Edagricole, Bologna, pp 225.

Bernetti G, La Marca O (2010). Il bosco ceduo nella realtà italiana. [Coppice forest in the italian reality]. Lettura tenuta il 21 ottobre 2010. Atti dei Georgofili, pp 44.

Bianchi L, Giovannini G (2006). Observations on the felling of standards in oak coppices, Central Italy. Forest 3(3):397-406. https://doi.org/10.3832/efor0390-0030397

Bieniawski ZT (1976). Rock mass classification in rock engineering. Proceedings Symposium Exploration for Rock Engineering. Johannesburg. Balkema 1:97-106.

Borrelli P, Panagos P, Märker M, Modugno S, Schütt B (2017a). Assessment of the impacts of clear-cutting on soil loss by water erosion in Italian forests: First comprehensive monitoring and modelling approach. Catena 149:770-781. https://doi.org/10.1016/j.catena.2016.02.017

Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C, … Panagos P (2017b). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8(1):2013. https://doi.org/10.1038/s41467-017-02142-7

Borselli L, Torri D, Poesen J, Iaquinta P (2012) A robust algorithm for estimating soil erodibility in different climates. Catena 97:85-94. https://doi.org/10.1016/j.catena.2012.05.012

Bottacci A (2018). Il TUFF, la gestione attiva dei boschi e le generazioni future. [TUFF, active forest management and future generations]. Italia Forestale e Montana 73:4-5.

Buckley P, Mills J (2018). Conservation of Coppice and High Forest Management within the Natura 2000 Network – A Review. Chapter 4. In: Unrau A, Becker G, Spinelli R, Lazdina D, Magagnotti N, Nicolescu VN, Buckley P, Bartlett D, Kofman PD (Eds). Coppice Forests in Europe. Albert Ludwig University of Freiburg, pp 110-135.

Buckley P, Suchomel C, Moos C, Conedera M (2018). Prevention of Soil Erosion and Rockfall by Coppice and High Forest – A Review. Chapter 4. In: Unrau A, Becker G, Spinelli R, Lazdina D, Magagnotti N, Nicolescu VN, Buckley P, Bartlett D, Kofman PD (Eds). Coppice Forests in Europe. Albert Ludwig University of Freiburg, pp 139-151.

Capizzi D, Luiselli L (1996). Ecological relationships between small mammals and age of coppice in an oak-mixed forest in central Italy. Revue d'Écologie 51:277-291.

Ceccherini G, Duveiller G, Grassi G, Lemoine G, Avitabile V, Pilli R, Cescatti A (2020). Abrupt increase in harvested forest area over Europe after 2015. Nature 583:72-77. https://doi.org/10.1038/s41586-020-2438-y

Cianfaglione K (2015). On the potential of Quercus pubescens Willd. and other species of Quercus in the Camerino syncline (Central Italy). In: Box EO and Fujiwara K (Eds). Warm-temperate Deciduous Forests Around the Northern Hemisphere. Geobotany Studies. Basics, Methods and Case Studies. Springer Nature, Switzerland, pp 165-174. https://doi.org/10.1007/978-3-319-01261-2_9

Clauser F (1989). Povertà del bosco ceduo. [Poverty of coppice forest]. In: Biondi E (Ed). Il Bosco nell’Appennino: 83-98. Centro Studi Valleremita, Fabriano.

Cleugh HA (1998). Effects of windbreaks on airflow, microclimates and crop yields. Agroforest Systems 41:55-84.

Corona P, La Marca O, Schirone B (1986). Ricerche sull’ottimizzazione della intensità di matricinatura nei cedui di cerro: I – Il ceduo composto a maturità. [Research on the optimization of the intensity of the release of standards in turkey oak coppice: I-mature mixed coppice]. Annali Accademia Italiana Scienze Forestali 35:123-158.

Coschignano G, Nicolaci A, Ferrari E, Cruscomagno F, Iovino F (2019) Evaluation of hydrological and erosive effects at the basin scale in relation to the severity of forest fires. iForest-Biogeosciences and Forestry 12:427-434. https://doi.org/10.3832/ifor2878-012

Del Favero R (2001). Progetto Boschi del Parco Regionale dei Colli Euganei. [Project Forests of the Colli Euganei regional park]. Progetto Leader II – G.A.I. Patavino. Parco Regionale dei Colli euganei, Este (Padova).

Desiato F, Fioravanti G, Fraschetti P, Perconti W, Piervitali E (2015). Il Clima Futuro in Italia: Analisi delle proiezioni dei modelli regionali. [Future Climate in Italy: Analysis of the projections of regional model]. Edizione 2015. ISPRA, Stato dell’Ambiente 58/2015.

Di Fernando S, Marchetti A, Migliore M, Napoli R, Paolanti M, Pennelli B (2019). Atlante dei Suoli della Regione Lazio. [Latium region Atlas of soils]. Arsial, Regione Lazio, ISBN 978-88-904841-2-4.

Diodato N (2004). Estimating RUSLE’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrology and Earth System Sciences 8(1):103-107. https://doi.org/10.5194/hess-8-103-2004

EEA - European Environment Agency (2017). Climate Change Adaptation and Disaster Risk Reduction in Europe. EEA: Kongens Nytorv, Denmark 15:1-171.

Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, … Sullivan CA (2017). Trees, forests, and water: Cool insights for a hot world. Global Environmental Change 43:51-61. https://doi.org/10.1016/j.gloenvcha.2017.01.002

Eurostat-European Statistical Office (2020). Eurostat. Retrieved 2021 February 14 from https://ec.europa.eu/eurostat/web/energy/data/energy-balances

Fiorucci E (2009) Le matricine nei boschi cedui: le attuali regole di rilascio sono ancora valide? [Standards in coppice forests: current rules are still valid?]. Forest@-Journal of Silviculture and Forest Ecology 6:56-65.

Garfì G, Veltri A, Callegari G, Iovino F (2006). Effetti della ceduazione sulle perdite di suolo in popolamenti di castagno della Catena Costiera Cosentina (Calabria). [Effect on the soil loss after coppicing in chestnut populations of the Cosentino Coast Chain (Calabria)]. L'Italia Forestale e Montana 6:507-531.

Grauso S, Verrubbi V, Zini A, Peloso A, Crovato C, Sciortino M (2015). Soil Erosion Estimate in Southern Latium (Central Italy) Using Rusle and Geostatistical Techniques. ENEA Technical Reports, RT/2015/22/ENEA.

Greatorex-Davies JN, Marrs RH (1992). The quality of coppice woods as habitats for invertebrates. In: Buckley GP (Ed). Ecology and Management of Coppice Woodlands. Springer, Dordrecht, pp 271-296.

Grohmann F, Savini P, Frattegiani M (2002). La matricinatura per gruppi. [Grouped Standards method]. Sherwood 80:25-29.

Iovino F (2007). Analisi dell’uso del suolo e linee operative di gestione forestale sostenibile per mitigare la vulnerabilità del territorio di Pizzo d’Alvano (Campania). [Use of soil analysis and operative guidelines for a sustainable forest management in Pizzo D’Alvano area (Campania)]. Quaderni del Laboratorio di Cartografia Ambientale e Modellistica Idrogeologica, Università della Calabria, Dipartimento Difesa del Suolo. Volume 2, pp 64.

Iovino F (2009). Ruolo della selvicoltura nella conservazione del suolo. [Silviculture role on the conservation of soil]. In: Atti del Terzo Congresso Nazionale di Selvicoltura (Taormina, 16-19 Ottobre 2008). Accademia Italiana di Scienze Forestali, Firenze, pp 425-436.

Jarimi H, Powell R, Riffat S (2020). Review of sustainable methods for atmospheric water harvesting. International Journal of Low-Carbon Technologies 15(2):253-276. https://doi.org/10.1093/ijlct/ctz072

La Marca O (1991). Studi e ricerche sull’ottimizzazione della matricinatura nei boschi cedui. [Study and research on the optimization of the release of standards in coppice forest]. Italia Forestale e Montana 2:118-132.

La Marca O, Marzialiano PA, Scotti R (1996). Effect of standard density on coppice structure development: evaluation 14 year after coppicing in a Turkey oak experimental trial. Annali Istituto Sperimentale Selvicololtura, Arezzo 27:161-166.

La Marca O, Mattioli M, Iorio G (1987). Ricerche sull’ottimizzazione della intensità di matricinatura nei cedui di cerro: II – Il soprassuolo arboreo nei primi due anni del ciclo produttivo. [Research on the optimization of the intensity of the release of standards in turkey oak coppice: The tree stand in the first two years of the production cycle]. Annali Accademia Italiana Scienze Forestali 36:3-33.

Londe V, Messias TBMC, Caldas de Sousa H (2021). Vegetation restoration is associated with increasing forest width. New Forests 52:129-144. https://doi.org/10.1007/s11056-020-09786-2

Manetti MC, Becagli C, Sansone D, Pelleri F (2016). Tree-oriented silviculture: a new approach for coppice stands. iForest-Biogeosciences and Forestry 9:791-800. https://doi.org/10.3832/ifor1827-009

Morgan RPC (2001). A simple approach to soil loss prediction: A revised Morgan-Morgan-Finney model. Catena 44(4):305-322. https://doi.org/10.1016/S0341-8162(00)00171-5

ODARC (2004). Guide pratique pour l’exploitation des forêts de chêne vert en Corse. [Practical guide for the exploitation of the holm oak forests in Corsica]. Office Développement Agricole Rural de Corse, Bastia, France pp 40.

Pedrotti F (2013). Plant and vegetation mapping. Springer, Dordrecht, pp 249.

Perrin H (1954). Sylviculture. [Silviculture. Ed. Ecole Nationale des Eaux et Forêts. Trad. ital. Selvicoltura, 1986. Accademia Italiana di Scienze Forestali. Firenze.

Peterken GF (1999). Applying natural forestry concepts in a intensively managed landscape. Global Ecology and Biogeography 8:321-328. https://doi.org/10.1046/j.1365-2699.1999.00140.x

Piussi P (2000). Selvicoltura generale. [General silviculture]. UTET, Torino.

Plant of the World http://powo.science.kew.org/

Searchinger TD, Beringer T, Holtsmark B, Kammen DM, Lambin EF, Lucht W, ... van Ypersele JP (2018). Europe’s renewable energy directive poised to harm global forests. Nature Communications 9:1-4.

Sheil D (2009). How forests attract rain: an examination of a new hypothesis. BioScience 59:341-347. https://doi.org/10.1525/bio.2009.59.4.12

Sheil D (2014). How plants water our planet: advances and imperatives. Trends in Plant Science 19(4):209-211. https://doi.org/10.1016/j.tplants.2014.01.002

Sheldrake M (2020). L’ordine nascosto. La vota segreta dei funghi. [How fungi make our worlds, change our minds, and shape our futures]. Marsilio, Venezia.

Torri D, Borselli L, Guzzetti F, Calzolari MC, Bazzoffi P, Ungaro F, Bartolini D, Salvador Sanchis MP (2006). Italy. In: Boardman J and Poesen J (Eds). Soil Erosion in Europe. https://doi.org/10.1002/0470859202.ch20

Trigila A, Iadanza C, Bussettini M, Lastoria B (2018). Dissesto idrogeologico in Italia: pericolosità e indicatori di rischio. [Hydrogeological risk in Italy: Danger and risk indicators]. Edizione 2018. ISPRA, Rapporti 287/2018.

Vacca A, Aru F, Ollesch G (2017). Short-term impact of coppice management on soil in a Quercus ilex L. stand of Sardinia. Land Degradation & Development 28 (2):553-565. https://doi.org/10.1002/ldr.2551

Van der Knijff JM, Jones RJ, Montanarella L (2000). Soil erosion risk assessment in Italy. European Soil Bureau, Joint Research Center of the European Commission. Scientific-Technical Reports, EUR 19044 EN, pp 34.

Wischmeier WH, Smith DD (1978). Predicting rainfall erosion losses - a guide to conservation planning. USDA, Science and Education Administration.

Zanzi Sulli A, Di Pasquale G (1993). Funzioni delle matricine dei cedui nella teoria selvicolturale del XVIII e XIX secolo. [Standards features in coppice in the silvicultural theory of the XVIII and XIX centuries]. Rivista Storica Agricola 1:109-121.

Published
2021-06-04
How to Cite
SCHIRONE, B., SALVANESCHI, P., CIANFAGLIONE, K., PECCI, M., ANDRISANO, T., VESSELLA, F., & PETROSELLI, A. (2021). A proposal for modifying coppicing geometry in order to reduce soil erosion in the forest areas. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(2), 12325. https://doi.org/10.15835/nbha49212325
Section
Research Articles
CITATION
DOI: 10.15835/nbha49212325