The effect of titanium dioxide nanoparticles on the relative expression of catalase, P450, SOD, diTDS and WRKY genes of Vitex agnus-castus L.

Authors

  • Seyed M. MOSHIRIAN FARAHI Islamic Azad University, Department of Biology, Science and Research Branch, Tehran (IR)
  • Alireza IRANBAKHSH Islamic Azad University, Department of Biology, Science and Research Branch, Tehran (IR)
  • Homa MAHMOODZADEH Islamic Azad University of Mashhad, Khorasan Razavi Province, Iran, Department of Biology, Mashhad, Kuy-e-Honar, Ostad Yousefi Boulevard (IR)
  • Mostafa EBADI Islamic Azad University of Damghan, Semnan Province, Iran, Department of Biology, Damghan, Damghan-Cheshme Ali Road (IR)

DOI:

https://doi.org/10.15835/nbha49412292

Keywords:

gene expression, quantitative RT-PCR, Vitex plant, TiO2 nanoparticles

Abstract

DOI: 10.15835/nbha49412292

Each environmental factor is able to change the way genes are expressed. Application of nanoparticles also affects the expression of different genes in plants. The aim of this study was to investigate the effect of three different concentration of titanium dioxide nanoparticles, TiO2 (zero, 200 and 800 micrograms per milliliter) on the relative expression of catalase, P450, SOD, diTDS and WRKY genes in Vitex plant leaf tissue using qRT- PCR. Plant cultivation was carried out in 2018 in the greenhouse of Islamic Azad University of Mashhad. The experiment was arranged as completely random design with 5 replications. XRD measurements showed that applied TiO2 nanoparticles were in the form of anatase. Statistical analysis of gene expression in treated leaves of Vitex plant with TiO2 nanoparticles showed that this nanoparticle significantly affected the expression of catalase, P450, SOD, diTPS and WRKY genes. A concentration of 800 micrograms per milliliter of TiO2 nanoparticle increased the expression of catalase, P450, SOD and WRKY genes and decreased the expression of diTPS gene. In contrast, concentrations of 200 micrograms per milliliter only increased the expression of catalase and WRKY genes. The expression of the diTPS gene under treatments of 200 and 800 micrograms per liter of TiO2, compared with control, decreased by 2.1 and 0.46, respectively. Overall, the nanoparticle was able to influence the expression of genes in the biosynthetic pathway of terpenoids, as well as the plant's antioxidant enzymes, depending on the concentration of nanoparticles.

References

Azadbakht M, Baheddini A, Shorideh SM, Naserzadeh A (2005). Effect of (Vitex agnus-castus L.) leaf and fruit flavonoidal extracts on serum prolactin concentration. Journal of Medicinal Plants 4(16):56-61. http://jmp.ir/article-1-690-en.html

Brattström A, Max Zeller Sohne AG (2014). Use of (Vitex agnus castus) extracts for preparing a medicament. U.S. Patent 8,637,099. https://patents.google.com/patent/US20100151059A1/en

Carmichael AR (2008). Can (Vitex agnus castus) be used for the treatment of mastalgia? What is the current evidence?. Evidence-Based Complementary and Alternative Medicine 5(3):247-250. https://doi.org/10.1093/ecam/nem074

Chen F, Tholl D, Bohlmann J, Pichersky E (2011). The family of terpene synthases in plants: a mid‐size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal 66(1):212-229. https://doi.org/10.1111/j.1365-313X.2011.04520.x

Chen SN, Friesen JB, Webster D, Nikolic D, Breemen RB, Wang ZJ, … Pauli GF (2011). Phytoconstituents from (Vitex agnus-castus) fruits. Fitoterapia 82(4):528-533. https://doi.org/10.1016/j.fitote.2010.12.003

Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, Chen XY (2007). Plant terpenoids: biosynthesis and ecological functions. Journal of Integrative Plant Biology 49(2):179-186 https://doi.org/10.1111/j.1744-7909.2007.00395.x

Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010). Magnetic nanoparticles and targeted drug delivering. Pharmacological Research 62(2):144-149. https://doi.org/10.1016/j.phrs.2010.01.014

Dugoua JJ, Seely D, Perri D, Koren G, Mills E (2008). Safety and efficacy of chaste tree (Vitex agnus-castus) during pregnancy and lactation. Journal of Population Therapeutics and Clinical Pharmacology 15(1):e74-e79. https://www.jptcp.com/index.php/jptcp/article/view/191/150

Eulgem T, Somssich IE (2007). Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology 10(4):366-371. https://doi.org/10.1016/j.pbi.2007.04.020

Farahi S M M, Iranbakhsh A, Mahmoodzadeh H, Ebadi M, Baharara J (2019). Effects of titanium dioxide nanoparticles (TiO2) on germination and seedling growth of Vitex plants (Vitex agnus-castus L.). Journal of BioScience and Biotechnology 8(2):141-149. https://editorial.uni-plovdiv.bg/index.php/JBB/article/view/288

Geisler K, Hughes RK Sainsbury F, Lomonossoff GP, Rejzek M, Fairhurst S, … Bak S (2013). Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proceedings of the National Academy of Sciences 110(35):E3360-E3367. https://doi.org/10.1073/pnas.1309157110

Ghasemi B, Hosseini R, Nayeri FD (2015). Effects of cobalt nanoparticles on artemisinin production and gene expression in (Artemisia annua). Turkish Journal of Botany 39(5):769-777. https://doi.org/10.3906/bot-1410-9.

Ghorbanpour M, Hatami M, Hatami M (2015). Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of (Hyoscyamus niger L.) plants with nano-sized titanium dioxide and bulk application. Acta Agriculturae Slovenica 105(1):23-32. http://dx.doi.org/10.14720/aas.2015.105.1.03

Hamberger B, Ohnishi T, Hamberger B, Séguin A, Bohlmann J (2011). Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiology 157(4):1677-1695. https://doi.org/10.1104/pp.111.185843

He X, Wang H, Yang J, Deng K, Wang T (2018). RNA sequencing on (Amomum villosum Lour) induced by MeJA identifies the genes of WRKY and terpene synthases involved in terpene biosynthesis. Genome 61(2):91-102. https://doi.org/10.1139/gen-2017-0142

Hoberg E, Orjala J, Meier B, Sticher O (1999). Diterpenoids from the fruits of (Vitex agnus-castus). Phytochemistry 52(8):1555-1558. https://doi.org/10.1016/S0031-9422(99)00181-8

Ignea C, Athanasakoglou A, Ioannou E, Georgantea P, Trikka FA, Loupassaki S, … Kampranis SC (2016). Carnosic acid biosynthesis elucidated by a synthetic biology platform. Proceedings of the National Academy of Sciences 113(13):3681-3686. https://doi.org/10.1073/pnas.1523787113

Jarry H, Spengler B, Wuttke W, Christoffel V (2006). In vitro assays for bioactivity-guided isolation of endocrine active compounds in (Vitex agnus-castus). Maturitas 55:S26-S36. https://doi.org/10.1016/j.maturitas.2006.06.014

Kahila M.M.H, Najy A.M, Rahaie M, Mir-Derikvand M (2018). Effect of nanoparticle treatment on expression of a key gene involved in thymoquinone biosynthetic pathway in (Nigella sativa L.). Natural Product Research 32(15):1858-1862. https://doi.org/10.1080/14786419.2017.1405398

Khodakovskaya MV, Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011). Complex genetic, photo thermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences 108(3):1028-1033. https://doi.org/10.1073/pnas.1008856108

Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010). Uptake and distribution of ultra-small anatase TiO2 Alizarin red S Nano conjugates in Arabidopsis thaliana. Nano Letters 10(7):2296-2302. https://doi.org/10.1021/nl903518f

Lee S, Badieyan S, Bevan DR, Herde M, Gatz C, Tholl D (2010). Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. Proceedings of the National Academy of Sciences 107(49):21205-21210. https://doi.org/10.1073/pnas.1009975107

Li D, Wang Y, Han K (2012). Recent density functional theory model calculations of drug metabolism by cytochrome P450. Coordination Chemistry Reviews 256(11-12):1137-1150. https://doi.org/10.1016/j.ccr.2012.01.016

Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402-408. https://doi.org/10.1006/meth.2001.1262

Luo P, Wang YH, Wang GD, Essenberg M, Chen XY (2001). Molecular cloning and functional identification of (+) ‐δ‐cadinene‐8‐hydroxylase, a cytochrome P450 mono‐oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. The Plant Journal 28(1):95-104. https://doi.org/10.1046/j.1365-313X.2001.01133.x

Mohammadi R, Maali-Amiri R, Mantri NL (2014). Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russian Journal of Plant Physiology 61(6):768-775. https://doi.org/10.1134/S1021443714050124

Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010). Nano particulate material delivery to plants. Plant Science 179(3):154-163. https://doi.org/10.1016/j.plantsci.2010.04.012

Namdeo AG (2007). Plant cell elicitation for production of secondary metabolites: a review. Pharmacognosy Reviews 1(1):69-79. https://www.phcogrev.com/sites/default/files/PhcogRev-1-1-69.pdf

Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu CJ, Dixon RA (2007). Different mechanisms for phytoalexin induction by pathogen and wound signals in (Medicago truncatula). Proceedings of the National Academy of Sciences 104(46):17909-17915. https://doi.org/10.1073/pnas.0708697104

Naoumkina MA, He X, Dixon RA (2008). Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in (Medicago truncatula). BMC Plant Biology 8(1):132. https://doi.org/10.1186/1471-2229-8-132

Ono M, Eguchi K, Konoshita M, Furusawa C, Sakamoto J, Yasuda S, … Nohara T (2011). A new diterpenoid glucoside and two new diterpenoids from the fruit of (Vitex agnus-castus). Chemical and Pharmaceutical Bulletin 59(3):392-396. https://doi.org/10.1248/cpb.59.392

Ono M, Nagasawa Y, Ikeda T, Tsuchihashi R, Okawa M, Kinjo J, Yoshimitsu H, Nohara T (2009). Three new diterpenoids from the fruit of (Vitex agnus-castus). Chemical and Pharmaceutical Bulletin 57(10):1132-1135. https://doi.org/10.1248/cpb.57.1132

Ono M, Yamasaki T, Konoshita M, Ikeda T, Okawa M, Kinjo J, Yoshimitsu H, Nohara T (2008). Five new diterpenoids, viteagnusins A-E, from the fruit of (Vitex agnus-castus). Chemical and Pharmaceutical Bulletin 56(11):1621-1624. https://doi.org/10.1248/cpb.56.1621

Pateraki I, Andersen-Ranberg J, Jensen NB, Wubshet SG, Heskes AM, Forman V, … Staerk D (2017). Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. eLife 6:e23001. https://doi.org/10.7554/eLife.23001.001

Peters RJ (2010). Two rings in them all: the labdane-related diterpenoids. Natural Product Reports 27(11):1521-1530. https://doi.org/10.1039/C0NP00019A

Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29(9):45-e45. https://doi.org/10.1093/nar/29.9.e45

Qi M, Liu Y, Li T (2013). Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biological Trace Element Research 156(1-3):323-328. https://doi.org/10.1007/s12011-013-9833-2

Raei M, Angaji S.A, Omidi M, Khodayari M (2014). Effect of abiotic elicitors on tissue culture of (Aloe vera). International Journal of Bioscience 5(1):74-81. http://dx.doi.org/10.12692/ijb/5.1.74-81

Rani A, Sharma A (2013). The genus Vitex: A review. Pharmacognosy Reviews 7(14):188. https://dx.doi.org/10.4103%2F0973-7847.120522

Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015). Differential effects of cerium oxide nanoparticles on rice, wheat, and barley roots: A Fourier Transform Infrared (FT-IR) micro spectroscopy study. Applied Spectroscopy 69(2):287-295. https://doi.org/10.1366%2F14-07495

Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010). WRKY transcription factors. Trends in Plant Science 15(5):247-258. https://doi.org/10.1016/j.tplants.2010.02.006

Scheler U, Brandt W, Porzel A, Rothe K, Manzano D, Božić D, … Marillonnet S (2016) Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast. Nature Communications 7(1):1-11. https://econewstoday.com/

Schluttenhofer C, Yuan L (2015). Regulation of specialized metabolism by WRKY transcription factors. Plant Physiology 167(2):295-306. https://doi.org/10.1104/pp.114.251769

Shakya P, Marslin G, Siram K, Beerhues L, Franklin G (2019). Elicitation as a tool to improve the profiles of high‐value secondary metabolites and pharmacological properties of (Hypericum perforatum). Journal of Pharmacy and Pharmacology 71(1):70-82. https://doi.org/10.1111/jphp.12743

Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015). Role of nanoparticles in plants. Nanotechnology and Plant Sciences 19-35. https://doi.org/10.1007/978-3-319-14502-0_2

Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011). The transcription factor CrWRKY positively regulates the terpenoid indole alkaloid biosynthesis in (Catharanthus roseus). Plant Physiology 157(4):2081-2093. https://doi.org/10.1104/pp.111.181834

Syu YY, Hung JH, Chen JC, Chuang HW (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry 83:57-64. https://doi.org/10.1016/j.plaphy.2014.07.010

Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2016). Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance. Frontiers in Environmental Science 4:46. https://doi.org/10.3389/fenvs.2016.00046

Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z (2007). Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology 65(6):799-815. https://doi.org/10.1007/s11103-007-9244-x

Wubshet SG, Tahtah Y, Heskes AM, Kongstad KT, Pateraki I, Hamberger B, Møller BL, Staerk D (2016) Identification of PTP1B and α-glucosidase inhibitory serrulatanes from Eremophila spp. by combined use of dual high-resolution PTP1B and α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR. Journal of Natural Products 79(4):1063-1072. https://doi.org/10.1021/acs.jnatprod.5b01128

Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004). Characterization of GaWRKY, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene Synthase-A. Plant Physiology 135(1):507-515. https://doi.org/10.1104/pp.104.038612

Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008). Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453(7195):638-641. https://doi.org/10.1038/nature06964

Yang Z, Wang X, Xue J, Meng L, Li R (2013). Identification and expression analysis of WRKY transcription factors in medicinal plant (Catharanthus roseus). Chinese Journal of Biotechnology 29(6):785-802.

Zhang B, Zheng LP, Yi Li W, Wen Wang J (2013). Stimulation of artemisinin production in (Artemisia annua) hairy roots by Ag-SiO2 core-shell nanoparticles. Current Nanoscience 9(3):363-370. https://doi.org/10.1023/A:1010535001943

Zhao J, Davis LC, Verpoorte R (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances 23(4):283-333. https://doi.org/10.1016/j.biotechadv.2005.01.003

Zhou F, Pichersky E (2020). More is better: the diversity of terpene metabolism in plants. Current Opinion in Plant Biology 55:1-10. https://doi.org/10.1016/j.pbi.2020.01.005

Downloads

Published

2021-11-30

How to Cite

MOSHIRIAN FARAHI, S. M., IRANBAKHSH, A., MAHMOODZADEH, H. ., & EBADI, M. . (2021). The effect of titanium dioxide nanoparticles on the relative expression of catalase, P450, SOD, diTDS and WRKY genes of Vitex agnus-castus L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(4), 12292. https://doi.org/10.15835/nbha49412292

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha49412292