Quality attributes during maturation of ‘Golden Delicious’ and ‘Red Delicious’ apples grown in two geographical regions with different environmental conditions

  • Francisco J. MOLINA-CORRAL Centro de Investigación en Alimentación y Desarrollo A.C., Av. Rio Conchos S/N, Cuauhtémoc, Chih., 31570
  • Miguel ESPINO-DÍAZ Centro de Investigación en Alimentación y Desarrollo A.C., Av. Rio Conchos S/N, Cuauhtémoc, Chih., 31570
  • Juan L. JACOBO Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Calle Presa de la Amistad 2015 Cuauhtémoc, Chih., 31510
  • Scott D. MATTINSON Washington State University, Department of Horticulture and Landscape Architecture, Pullman, WA 99164-6414
  • John K. FELLMAN Washington State University, Department of Horticulture and Landscape Architecture, Pullman, WA 99164-6414
  • David R. SEPÚLVEDA Centro de Investigación en Alimentación y Desarrollo A.C., Av. Rio Conchos S/N, Cuauhtémoc, Chih., 31570
  • Gustavo A. GONZÁLEZ-AGUILAR Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a la Victoria Km 0.6, Hermosillo, Son.
  • Nora A. SALAS-SALAZAR Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Calle Presa de la Amistad 2015 Cuauhtémoc, Chih., 31510
  • Guadalupe I. OLIVAS Centro de Investigación en Alimentación y Desarrollo A.C., Av. Rio Conchos S/N, Cuauhtémoc, Chih., 31570
Keywords: aroma volatiles; elevation; firmness; Malus domestica; photoperiod; photothermal units; solar radiation


Apples have distinctive quality attributes that may be defined by environmental conditions of the geographical regions where fruits are cultivated, such as temperature, solar radiation, photoperiod, and photothermic units. A three-year study was conducted to compare ‘Golden Delicious’ and ‘Red Delicious’ apples from two different regions, Washington, USA (WA) and Chihuahua, Mexico (CHIH). Apple samples were harvested weekly from early August to late October (~120-180 days after full bloom - DAFB), and analysed for quality parameters. Geographic environmental data were obtained, and photoperiod, solar radiation, degree-days and photothermal units were calculated. Results show quality differences between CHIH and WA apples. WA shows a ~5-week delay in apple bloom, possibly due to the lower temperatures presented in WA. Apples from both regions required the same photoperiod, ~ 2,222 h, to attain the beginning of the ripening stage, which took more days (three weeks) for CHIH apples, most likely attributed to the higher elevation of CHIH orchards (2,062 vs. 763 masl). The main distinctive quality differences found between WA and CHIH apples were firmness and aroma volatile compounds. CHIH apples presented substantially higher amounts of aroma compounds. WA apples showed greater firmness, probably due to lower photothermal units. Using all firmness data (both varieties, both growing zones) a remarkable correlation was found between firmness and photothermal units (R=0.89), which may suggest firmness could be improved by the manipulation of degree days and photoperiod, that is, temperature and light.


Metrics Loading ...


Ackermann J, Fischer M, Amado R (1992). Changes in sugars, acids, and amino acids during ripening and storage of apples (cv. Glockenapfel). Journal of Agricultural and Food Chemistry 40(7):1131-1134. https://doi.org/10.1021/jf00019a008

Alessandrini M, Gaiotti F, Belfiore N, Matarese F, D'Onofrio C, Tomasi D (2019). Influence of vineyard altitude on Glera grape ripening (Vitis vinifera L.): effects on aroma evolution and wine sensory profile. Journal of the Science of Food and Agriculture 97(9):2695-2705. https://doi.org/10.1002/jsfa.8093

Arakawa O, Hori Y, Ogata R (1985). Relative effectiveness and interaction of ultraviolet-B, red and blue light in anthocyanin synthesis of apple fruit. Physiologia Plantarum 64(3):323-327. https://doi.org/10.1111/j.1399-3054.1985.tb03347.x

Arakawa O (1988). Photoregulation of anthocyanin synthesis in apple fruit under UV-B and red light. Plant Cell Physiology 29(8):1385-1389. https://doi.org/10.1093/oxfordjournals.pcp.a077651

Azcon-Bieto J, Talon M (1996). Fisiología y Bioquímica vegetal. McGraw-Hill-Interamericana, México.

Bai J, Prange RK, Toivonen PMA (2009). Pome fuits. In: Yahia EM (Ed). CRC Press, Taylor & Francis Group LLC. Boca Raton, FL. pp 267-285.

Baiamonte I, Raffo A, Nardo N, Moneta E, Peparaio M, D’Aloise A, … Casera C (2016). Effect of the use of anti-hail nets on codling moth (Cydia pomonella) and organoleptic quality of apple (cv. Braeburn) grown in Alto Adige Region (northern Italy). Journal of the Science of Food and Agriculture 96(6)2025-2032. https://doi.org/10.1002/jsfa.7313

Bhattacharya S, Sen-Mandis S (2011). Variation in antioxidant and aroma compounds at different altitude: A study on tea (Camellia sinensis L. Kuntze) clones of Darjeeling and Assam, India. African Journal of Biochemistry Research 5(5)148-159. https://doi.org/10.5897/AJBR.9000260

Brat P, Yahia A, Chillet M, Bugaud C (2004). Influence of cultivar, growth altitude and maturity stage on banana volatile compound composition. Fruits 59(2):75-82. https://doi.org/10.1051/fruits:2004007

Choudhury SR, Roy S, Das R, Sengupta DN (2008). Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter. Planta 229(1):207-223. https://doi.org/10.1007/s00425-008-0821-2

Dal Cin VD, Danesin M, Botton A, Boschetti A, Dorigoni A, Ramina A (2007). Fruit load and elevation affect ethylene biosynthesis and action in apple fruit (Malus domestica L. Borkh) during development, maturation and ripening. Plant Cell & Environment 30(11):1480-1485. https://doi.org/10.1111/j.1365-3040.2007.01723.x

Danesin M, Dal Cin V, Ramina A, Comai M, Dorigoni A, Boschetti A (2004). Effect of altitude and fruit load on molecular aspects of apple maturation (Malus pumila Mill.; Trentino). Rivista di Frutticoltura e di Ortofloricoltura 66:54-57.

Dhanaraj S, Krishnaprakash MS, Arvindaprasad B, Ananthakrishna SM, Krishnaprasad CA, Narasimham P (1986). Effect of orchard elevation on maturity and quality of apples 1. Journal of Food Quality 9(3):129-142. https://doi.org/10.1111/j.1745-4557.1986.tb00783.x

Dimick PS, Hoskin JC, Acree TE (1983). Review of apple flavor-state of the art. Critical Reviews in Food Science & Nutrition 18(4):387-409. https://doi.org/10.1080/10408398309527367

Drogoudi PD, Pantelidis G (2011). Effects of position on canopy and harvest time on fruit physico-chemical and antioxidant properties in different apple cultivars. Scientia Horticulturae 129(4):752-760. https://doi.org/10.1016/j.scienta.2011.05.036

Dunemann F, Ulrich D, Malysheva-Otto L, Weber WE, Longhi S, Velasco R, Costa F (2012). Functional allelic diversity of the apple alcohol acyl-transferase gene MdAAT1 associated with fruit ester volatile contents in apple cultivars. Molecular Breeding 29(3):609-625. https://doi.org/10.1007/s11032-011-9577-7

Dussi MC, Giardina G, Sosa D, Reeb P (2005). Shade nets effect on canopy light distribution and quality of fruit and spur leaf on apple cv. Fuji. Spanish Journal of Agricultural Research 2:253-260. http://dx.doi.org/10.5424/sjar/2005032-144

Dwyer LM, Stewart DW (1987). Influence of photoperiod and water stress on growth, yield and development rate of barley measured in heat units. Canadian Journal of Plant Science 67(1):21-34. https://doi.org/10.4141/cjps87-003

Espino-Díaz M, González-Aguilar GA, Sepúlveda DR, Olivas GI (2016). Biochemistry of apple aroma: A review. Food Technology and Biotechnology 54(4):375-394. http://dx.doi.org/10.17113/ftb.

Faust M (2000). Physiological considerations for growing temperate-zone fruit crops in warm climates. In: Erez A (Ed). Temperate Fruit Crops in Warm Climates. Springer, Dordrecht pp 137-156. https://doi.org/10.1007/978-94-017-3215-4_7

Fellman JK, Rudell DR, Mattinson DS, Mattheis JP (2003). Relationship of harvest maturity to flavor regeneration after CA storage of ‘Delicious’ apples. Postharvest Biology and Technology 27(1):39-51. https://doi.org/10.1016/S0925-5214(02)00193-X

Faniadis D, Drogoudi PD, Vasilakakis M (2010). Effects of cultivar, orchard elevation, and storage on fruit quality characters of sweet cherry (Prunus avium L.). Scientia Horticulturae 125(3):301-304. https://doi.org/10.1016/j.scienta.2010.04.013

Gross J (1987). Pigments in fruits (Food Science and Technology). Academic Press, Oxford.

Guédon Y, Legave JM (2008). Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context. Ecological Modelling 219(1-2):189-199. https://doi.org/10.1016/j.ecolmodel.2008.08.010

Harker FR, Maindonald J, Murray SH, Gunson FA, Hallett IC, Walker SB (2002). Sensory interpretation of instrumental measurements 1: texture of apple fruit. Postharvest Biology and Technology 24(3):225-239. https://doi.org/10.1016/S0925-5214(01)00158-2

Holland D, Larkov O, Bar-Ya'akov I, Bar E, Zax A, Brandeis E, … Lewinsohn E (2005). Developmental and varietal differences in volatile ester formation and acetyl-CoA: alcohol acetyl transferase activities in apple (Malus domestica Borkh.) fruit. Journal of Agricultural and Food Chemistry 53(18):7198-7203. https://doi.org/10.1021/jf050519k

Huxsoll C, Bolin HR, King AD (1989). Physicochemical changes and treatments for lightly processed fruits and vegetables. In: Jen JJ (Ed). Quality Factors of Fruits and Vegetables. Chemistry and Technology. ACS Simposium Series, Washington, D.C. pp 201-215.

Jakopic J, Veberic R, Stampar F (2007). The effect of reflective foil and hail nets on the lighting, color and anthocyanins of ‘Fuji’ apple. Scientia Horticulturae 115(1):40-46. https://doi.org/10.1016/j.scienta.2007.07.014

Jakopic J, Stampar F, Veberic R (2010). Influence of hail net and reflective foil on cyanidin glycosides and quercetin glycosides in ‘Fuji’ apple skin. HortScience 45(10):1447-1452. https://doi.org/10.21273/HORTSCI.45.10.1447

Jiang B, Xi Z, Luo M, Zhang Z (2013). Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Research International 51(2):482-489. https://doi.org/10.1016/j.foodres.2013.01.001

Jin X, Wu X, Liu X (2017). Phenolic characteristics and antioxidant activity of Merlot and Cabernet Sauvignon wines increase with vineyard altitude in a high-altitude region. South African Journal of Enology and Viticulture 38(2):132-143. https://doi.org/10.21548/38-2-1068

Johnston JW, Hewett EW, Hertog ML (2002). Postharvest softening of apple (Malus domestica) fruit: a review. New Zealand Journal of Crop and Horticultural Science 30(3):145-160. https://doi.org/10.1080/01140671.2002.9514210

Kader AA (2008). Flavor quality of fruits and vegetables. Journal of the Science of Food and Agriculture 88(11):1863-1868. https://doi.org/10.1002/jsfa.3293

Kanchan J, Bhatia VS (2014). Impact of elevated temperatures on growth and yield of chickpea (Cicer arietinum L.). Field Crops Research 164:90-97. https://doi.org/10.1016/j.fcr.2014.06.003

Keatinge JDH, Aiming Q, Wheeler TR, Ellis RH, Summerfield RJ (1998). Effects of temperature and photoperiod on phenology as a guide to the selection of annual legume cover and green manure crops for hillside farming systems. Field Crops Research 57(2):139-152. https://doi.org/10.1016/S0378-4290(97)00122-6

Khan SA, Beekwilder J, Schaart JG, Mumm R, Soriano JM, Jacobsen E, Schouten HJ (2013). Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16. Tree Genetics and Genomes 9(2):475-487. https://doi.org/10.1007/s11295-012-0571-y

Kingston CM (1992). Maturity indices for apple and pear. In: Janick J (Ed). Horticultural Reviews. Volume 13. American Society for Horticultural Science. John Wiley & Sons, Inc. Toronto, Canada pp 407-432.

Knee M (1993). Pome Fruit: Biochemistry. In: Seymour GB, Taylor JE, Tucker GA (Eds). Biochemistry of Fruit Ripening. Chapman & Hall, University Press, Cambridge, UK pp 329-336.

Kondo S, Setha S, Rudell DR, Buchanan DA, Mattheis JP (2005). Aroma volatile biosynthesis in apples affected by 1-MCP and methyl jasmonate. Postharvest Biology and Technology 36(1):61-68. https://doi.org/10.1016/j.postharvbio.2004.11.005

Kronenberg HG (1983). Relationships between temperatures and blooming dates of apple trees. NJAS Wageningen Journal of Life Sciences 31(3):259-267. https://doi.org/10.18174/njas.v31i3.16949

Lancaster JE, Dougall DK (1992). Regulation of skin color in apples. Critical Reviews in Plant Sciences 10(6):487-502. https://doi.org/10.1080/07352689209382324

Li M, Feng F, Cheng L (2012). Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS One 7(3):e33055. https://doi.org/10.1371/journal.pone.0033055

López ML, Lavilla MT, Riba M, Vendrell M (1998). Comparison of volatile compounds in two seasons in apples: Golden Delicious and Granny Smith. Journal of Food Quality 21(2):155-166. http://dx.doi.org/10.1111/j.1745-4557.1998.tb00512.x

McMaster GS, Wilhelm W (1997). Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology 87(4):291-300. https://digitalcommons.unl.edu/usdaarsfacpub/83

Marini RP, Sowers D, Marini MC (1991). Peach fruit quality is affected by shade during final swell of fruit growth. Journal of the American Society for Horticultural Science 116(3):383-389. https://doi.org/10.21273/JASHS.116.3.383

Miller TW, Fellman JK, Mattheis JP, Mattinson DS (1998). Factors that influence volatile ester biosynthesis in ‘Delicious’ apples. Acta Horticulturae 464:195-200. https://doi.org/10.17660/ActaHortic.1998.464.27

Mphahlele RR, Caleb OJ, Fawole OA, Opara UL (2016). Effects of different maturity stages and growing locations on changes in chemical, biochemical and aroma volatile composition of ‘Wonderful’ pomegranate juice. Journal of the Science Food and Agriculture 96(3):1002-1009. https://doi.org/10.1002/jsfa.7186

Nilsson T, Gustavsson KE (2007). Postharvest physiology of ‘Aroma’ apples in relation to position on the tree. Postharvest Biology and Technology 43(1):36-46. https://doi.org/10.1016/j.postharvbio.2006.07.011

Nour V, Trandafir I, Ionica ME (2010). Compositional characteristics of fruits of several apple (Malus domestica Borkh.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(3):228-233. https://doi.org/10.15835/nbha3834762

Olivas GI, Mattinson DS, Barbosa-Canovas GV (2007). Alginate coatings for preservation of minimally processed ‘Gala’ apples. Postharvest Biology and Technology 45(1):89-96. https://doi.org/10.1016/j.postharvbio.2006.11.018

Ordoñez V, Molina-Corral FJ, Olivas-Dorantes CL, Jacobo-Cuéllar JL, González-Aguilar G, Espino M, Sepúlveda D, Olivas GI (2016). Comparative study of the effects of black or white hail nets on the fruit quality of ‘Golden Delicious’ apples. Fruits 71(4):229-238. https://doi.org/10.1051/fruits/2016015

Pérez AG, Sanz C (2008). Formation of fruit flavour. In: Brückner B, Wyllie SG (Eds). Fruit and vegetable flavour. CRC Press Boston New York Washington, D. C. and Woodhead Publishing Limited, Cambridge England pp 41-70.

Qin L, Wei QP, Kang WH, Zhang Q, Sun J, Liu SZ (2017). Comparison of volatile compounds in ‘Fuji’ apples in the different regions in China. Food Science and Technology Research 23(1):79-89. https://doi.org/10.3136/fstr.23.79

Reid MS, Rhodes MJC, Hulme AC (1973). Changes in ethylene and CO2 during the ripening of apples. Journal of the Science and Food Agriculture 24(8):971-979. https://doi.org/10.1002/jsfa.2740240815

Rowan DD, Allen JM, Fielder S, Hunt MB (1999). Biosynthesis of straight-chain ester volatiles in Red Delicious and granny smith apples using deuterium-labeled precursors. Journal of Agricultural and Food Chemistry 47(7):2553-2562. https://doi.org/10.1021/jf9809028

Salas NA, Molina-Corral FJ, González-Aguilar GA, Otero A, Sepulveda DR, Olivas GI (2011). Volatile production by ‘Golden Delicious’ apples is affected by preharvest application of aminoethoxyvinylglycine. Scientia Horticulturae 130(2):436-444. https://doi.org/10.1016/j.scienta.2011.07.017

Sams CE (1999). Preharvest factors affecting postharvest texture. Postharvest Biology and Technology 15(3):249-254. https://doi.org/10.1016/S0925-5214(98)00098-2

Saure MC (1990). External control of anthocyanin formation in apple. Scientia Horticulturae 42(3):181-218. https://doi.org/10.1016/0304-4238(90)90082-P

SIAP (2020). Servicio de Información Agroalimentaria y Pesquera. Anuario estadístico de la producción agrícola. Gobierno de México. Retrieved on March 04 2020 from https://nube.siap.gob.mx/cierreagricola/

Song J, Bangerth F (1996). The effect of harvest date on aroma compound production from ‘Golden Delicious’ apple fruit and relationship to respiration and ethylene production. Postharvest Biology and Technology 8(4):259-269. https://doi.org/10.1016/0925-5214(96)00020-8

Song J, Smart R, Wang H, Dambergs B, Sparrow A, Qian MC (2015). Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot Noir wine. Food Chemistry 173:424-431. https://doi.org/10.1016/j.foodchem.2014.09.150

Steyn WJ, Wand SJ, Jacobs G, Rosecrance RC, Roberts SC (2009). Evidence for a photoprotective function of low‐temperature‐induced anthocyanin accumulation in apple and pear peel. Physiologia Plantarum 136(4):461-472. https://doi.org/10.1111/j.1399-3054.2009.01246.x

Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006). Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology 142(3):1216-1232. https://doi.org/10.1104/pp.106.088104

Timilsina K, Tripathi KM (2019). Chemical quality attributes of mandarin (Citrus reticulata Blanco) as affected by altitude and fruit bearing position in Kavre, Nepal. Archives of Agriculture and Environmental Science 4(3):319-325. https://doi.org/10.26832/24566632.2019.0403010

Topping AJ (1981). A recording laboratory penetrometer for fruit. Journal of Agricultural Engineering Research 26(2):179-183. https://doi.org/10.1016/0021-8634(81)90069-X

Trad M, Gaaliche B, Renard CMGC, Marse M (2013). Inter- and intra-tree variability in quality of figs. Influence of altitude, leaf area and fruit position in the canopy. Scientia Horticulturae 162:49-54. https://doi.org/10.1016/j.scienta.2013.07.032

Umemura H, Otagaki S, Wada M, Kondo S (2013). Expression and functional analysis of a novel MYB gene, MdMYB110a_JP, responsible for red flesh, not skin color in apple fruit. Planta 238(1):65-76. https://doi.org/10.1007/s00425-013-1875-3

USDA (2020). United States Department of Agriculture. National Agricultural of Agriculture. Agricultural Statistics 2020. Chapter V, Statistics of fruits, tree nuts, and horticultural specialties. United States Government. Washington, D.C.

Wills RHH, Lee TH, Graham D, McGlasson WB, Hall EG (1981). Postharvest. An introduction to the Physiology and Handling of fruit and vegetables. A VI publishing, Westport, Conn. Granada, London. UK.

Wilsie CP (1962). Crop adaptation and distribution. Freeman W. H. and Co., London.

Wu J, Gao H, Zhao L, Liao X, Chen F, Wang Z, Hu X (2007). Chemical compositional characterization of some apple cultivars. Food Chemistry 103(1):88-93. https://doi.org/10.1016/j.foodchem.2006.07.030

Xu XQ, Liu B, Zhu BQ, Lan YB, Gao Y, Wang D, … Duan CQ (2015). Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions. Plant Physiology and Biochemistry 89:123-133. https://doi.org/10.1016/j.plaphy.2015.02.020

How to Cite
MOLINA-CORRAL, F. J., ESPINO-DÍAZ, M., JACOBO, J. L., MATTINSON, S. D., FELLMAN, J. K., SEPÚLVEDA, D. R., GONZÁLEZ-AGUILAR, G. A., SALAS-SALAZAR, N. A., & OLIVAS, G. I. (2021). Quality attributes during maturation of ‘Golden Delicious’ and ‘Red Delicious’ apples grown in two geographical regions with different environmental conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12241. https://doi.org/10.15835/nbha49112241
Research Articles
DOI: 10.15835/nbha49112241