A biopolymer with antimicrobial properties and plant resistance inducer against phytopathogens: Chitosan


  • Juan A. TORRES-RODRIGUEZ Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, 23096 (MX)
  • Juan J. REYES-PÉREZ Universidad Técnica Estatal de Quevedo, Quevedo EC 120501, Los Ríos (EC)
  • Thelma CASTELLANOS Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, 23096 (MX)
  • Carlos ANGULO Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, 23096 (MX)
  • Evangelina E. QUIÑONES-AGUILAR Centro de Investigaciones y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, 44270 (MX)
  • Luis G. HERNANDEZ-MONTIEL Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, 23096 (MX)




antimicrobial activity; induced systemic resistance; main sources of chitin; fruit protection; chitosan nanoparticles


Some synthetic fungicides have been currently prohibited due to their adverse effects; thus, searching for alternatives to decrease their application is a priority worldwide. An alternative to the application of synthetic fungicides is chitosan -a natural biopolymer- because of its biocompatibility, biodegradability, and bioactivity. Chitosan has been used in different industries, such as cosmetology, pharmaceutics, food, among others. In agriculture, it has been used as a resistance inductor and bio-fungicide because of its antimicrobial activity and for plant development as growth promoter. Although many works have been published on chitosan for its characteristics and mode of action, the direct effects on agriculture -both in plant and fruit phytopathogens- have not been reported. Therefore, the objective of this review is to summarize recent advances and achievements of chitosan application in agriculture with special attention to its antimicrobial properties and plant defence induction mechanisms.


Metrics Loading ...


Abdel-Aliem HA, Gibriel AY, Rasmy NM, Sahab AF, El-Nekeety AA, Abdel-Wahhab MA (2019). Antifungal efficacy of chitosan nanoparticles against phytopathogenic fungi and inhibition of zearalenone production by Fusarium graminearum. Comunicata Scientiae 10(3):338-345. https://doi.org/10.14295/cs.v10i3.1899 DOI: https://doi.org/10.14295/cs.v10i3.1899

Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I (2018). Chitosan as biomaterial in drug delivery and tissue engineering. International Journal of Biological Macromolecules 110:97-109. https://doi.org/10.1016/j.ijbiomac.2017.08.140 DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.140

Aili D, Adour L, Houali K, Amrane A (2019). Effect of temperature in chitin and chitosan production by solid culture of Penicillium Camembertii on YPG medium. International Journal of Biological Macromolecules 133:998-1007. https://doi.org/10.1016/j.ijbiomac.2019.04.116 DOI: https://doi.org/10.1016/j.ijbiomac.2019.04.116

Al‐Hetar MY, Zainal Abidin MA, Sariah M, Wong MY (2011). Antifungal activity of chitosan against Fusarium oxysporum f. sp. cubense. Journal of Applied Polymer Science 120(4):2434-2439. https://doi.org/10.1002/app.33455 DOI: https://doi.org/10.1002/app.33455

Aranaz I, Acosta N, Civera C, Elorza B, Mingo J, Castro C, ... Heras Caballero A (2018). Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers 10(2):213. https://doi.org/10.3390/polym10020213 DOI: https://doi.org/10.3390/polym10020213

Avdiushko SA, Ye XS, Kuc J (1993). Detection of several enzymatic activities in leaf prints of cucumber plants. Physiological and Molecular Plant Pathology 42(6):441-454. https://doi.org/10.1006/pmpp.1993.1033 DOI: https://doi.org/10.1006/pmpp.1993.1033

Baker BP, Green TA, Loker AJ (2020). Biological control and integrated pest management in organic and conventional systems. Biological Control 140:104095. https://doi.org/10.1016/j.biocontrol.2019.104095 DOI: https://doi.org/10.1016/j.biocontrol.2019.104095

Berger LRR, Stamford NP, Willadino LG, Laranjeira D, de Lima MAB, Malheiros SMM, ... Stamford TCM (2016). Cowpea resistance induced against Fusarium oxysporum f. sp. tracheiphilum by crustaceous chitosan and by biomass and chitosan obtained from Cunninghamella elegans. Biological Control 92:45-54. https://doi.org/10.1016/j.biocontrol.2015.09.006 DOI: https://doi.org/10.1016/j.biocontrol.2015.09.006

Bhattacharyya MK, Ward EWB (1988). Phenylalanine ammonia-lyase activity in soybean hypocotyls and leaves following infection with Phytophthora megasperma f. sp. glycinea. Canadian Journal of Botany 66(1):18-23. https://doi.org/10.1139/b88-003 DOI: https://doi.org/10.1139/b88-003

Bigeard J, Colcombet J, Hirt H (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant 8(4):521-539. https://doi.org/10.1016/j.molp.2014.12.022 DOI: https://doi.org/10.1016/j.molp.2014.12.022

Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015). Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Scientific Reports 5:15195. https://doi.org/10.1038/srep15195 DOI: https://doi.org/10.1038/srep15195

Chang AKT, Frias Jr RR, Alvarez LV, Bigol UG, Guzman JPMD (2019). Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatalysis and Agricultural Biotechnology 17:189-195. https://doi.org/10.1016/j.bcab.2018.11.016 DOI: https://doi.org/10.1016/j.bcab.2018.11.016

Cheba BA (2011). Chitin and chitosan: marine biopolymers with unique properties and versatile applications. Global Journal of Biotechnology and Biochemistry 6(3):149-153.

Chien RC, Yen MT, Mau JL (2016). Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydrate Polymers 138:259-264. https://doi.org/10.1016/j.carbpol.2015.11.061 DOI: https://doi.org/10.1016/j.carbpol.2015.11.061

Chun SC, Chandrasekaran M (2019). Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato. International Journal of Biological Macromolecules 125:948-954. https://doi.org/10.1016/j.ijbiomac.2018.12.167 DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.167

Coutinho TC, Ferreira MC, Rosa LH, de Oliveira AM, de Oliveira Júnior EN (2020). Penicillium citrinum and Penicillium mallochii: New phytopathogens of orange fruit and their control using chitosan. Carbohydrate Polymers 234:115918. https://doi.org/10.1016/j.carbpol.2020.115918 DOI: https://doi.org/10.1016/j.carbpol.2020.115918

de Lamo FJ, Šimkovicová M, Fresno DH, de Groot T, Tintor N, Rep M … Takken FL (2020). Pattern‐triggered immunity restricts host colonization by endophytic fusaria, but does not affect endophyte‐mediated resistance. Molecular Plant Pathology 00:1-12. https://doi.org/10.1111/mpp.13018 DOI: https://doi.org/10.1111/mpp.13018

Divya K, Vijayan S, George TK, Jisha MS (2017). Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers and Polymers 18(2):221-230.

Dubin A, Likhanov A, Klyachenko O, Subin A, Kluvadenko A (2021). Effect of chitosan formulations of different biological origin on tobacco (Nicotiana tabacum L.) PR-genes expression. Journal of Microbiology, Biotechnology and Food Sciences 9(6):1141-1144. https://doi.org/10.15414/jmbfs.2020.9.6.1141-1144 DOI: https://doi.org/10.15414/jmbfs.2020.9.6.1141-1144

El Amerany F, Meddich A, Wahbi S, Porzel A, Taourirte M, Rhazi M, … Hause B (2020). Foliar application of chitosan increases tomato growth and influences mycorrhization and expression of endochitinase-encoding genes. International Journal of Molecular Sciences 21(2):535. https://doi.org/10.3390/ijms21020535 DOI: https://doi.org/10.3390/ijms21020535

Farrokhi N, Burton RA, Brownfield L, Hrmova M, Wilson SM, Bacic A, … Fincher GB (2006). Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnology Journal 4(2):145-167. https://doi.org/10.1111/j.1467-7652.2005.00169.x DOI: https://doi.org/10.1111/j.1467-7652.2005.00169.x

Fournier P, Szczepanski CR, Godeau RP, Godeau G (2020). Chitosan extraction from Goliathus orientalis Moser, 1909: Characterization and comparison with commercially available chitosan. Biomimetics 5(2):15. https://doi.org/10.3390/biomimetics5020015 DOI: https://doi.org/10.3390/biomimetics5020015

Gai QY, Jiao J, Wang X, Liu J, Wang Z, Fu YJ (2019). Chitosan promoting formononetin and calycosin accumulation in Astragalus membranaceus hairy root cultures via mitogen-activated protein kinase signaling cascades. Scientific Reports 9(1):1-11. https://doi.org/10.1038/s41598-019-46820-6 DOI: https://doi.org/10.1038/s41598-019-46820-6

Gutiérrez-Martínez P, Bautista-Baños S, Berúmen-Varela G, Ramos-Guerrero A, Hernández-Ibañez AM (2017). In vitro response of Colletotrichum to chitosan. Effect on incidence and quality on tropical fruit. Enzymatic expression in mango. Acta Agronómica 66(2):282-289. http://dx.doi.org/10.15446/acag.v66n2.53770 DOI: https://doi.org/10.15446/acag.v66n2.53770

Hadwiger LA (2013). Multiple effects of chitosan on plant systems: solid science or hype. Plant Science 208:42-49. https://doi.org/10.1016/j.plantsci.2013.03.007 DOI: https://doi.org/10.1016/j.plantsci.2013.03.007

Hamdi M, Hammami A, Hajji S, Jridi M, Nasri M, Nasri R (2017). Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera. International Journal of Biological Macromolecules 101:455-463. https://doi.org/10.1016/j.ijbiomac.2017.02.103 DOI: https://doi.org/10.1016/j.ijbiomac.2017.02.103

Hamed I, Özogul F, Regenstein JM (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science and Technology 48:40-50. https://doi.org/10.1016/j.tifs.2015.11.007 DOI: https://doi.org/10.1016/j.tifs.2015.11.007

Hammerschmidt R (1999). Phytoalexins: what have we learned after 60 years?. Annual Review of Phytopathology 37(1):285-306. https://doi.org/10.1146/annurev.phyto.37.1.285 DOI: https://doi.org/10.1146/annurev.phyto.37.1.285

Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001). A large family of class III plant peroxidases. Plant and Cell Physiology 42(5):462-468. https://doi.org/10.1093/pcp/pce061 DOI: https://doi.org/10.1093/pcp/pce061

Jiang X, Lin H, Lin M, Chen Y, Wang H, Lin Y, ... Lin Y (2018). A novel chitosan formulation treatment induces disease resistance of harvested litchi fruit to Peronophythora litchii in association with ROS metabolism. Food Chemistry 266:299-308. https://doi.org/10.1016/j.foodchem.2018.06.010 DOI: https://doi.org/10.1016/j.foodchem.2018.06.010

Jongsri P, Rojsitthisak P, Wangsomboondee T, Seraypheap K (2017). Influence of chitosan coating combined with spermidine on anthracnose disease and qualities of ‘Nam Dok Mai’mango after harvest. Scientia Horticulturae 224:180-187. https://doi.org/10.1016/j.scienta.2017.06.011 DOI: https://doi.org/10.1016/j.scienta.2017.06.011

Jongsri P, Wangsomboondee T, Rojsitthisak P, Seraypheap K (2016). Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. LWT-Food Science and Technology 73:28-36. https://doi.org/10.1016/j.lwt.2016.05.038 DOI: https://doi.org/10.1016/j.lwt.2016.05.038

Katiyar D, Hemantaranjan A, Singh B (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology 20(1):1-9. https://doi.org/10.1007/s40502-015-0139-6 DOI: https://doi.org/10.1007/s40502-015-0139-6

Kaur J, Munshi GD, Singh RS, Koch E (2005). Effect of carbon source on production of lytic enzymes by the sclerotial parasites Trichoderma atroviride and Coniothyrium minitans. Journal of Phytopathology 153(5):274-279. https://doi.org/10.1111/j.1439-0434.2005.00969.x DOI: https://doi.org/10.1111/j.1439-0434.2005.00969.x

Kaya M, Baran T (2015a). Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana). International Journal of Biological Macromolecules 75:7-12. https://doi.org/10.1016/j.ijbiomac.2015.01.015 DOI: https://doi.org/10.1016/j.ijbiomac.2015.01.015

Kaya M, Baublys V, Šatkauskienė I, Akyuz B, Bulut E, Tubelytė V (2015b). First chitin extraction from Plumatella repens (Bryozoa) with comparison to chitins of insect and fungal origin. International Journal of Biological Macromolecules 79:126-132. https://doi.org/10.1016/j.ijbiomac.2015.04.066 DOI: https://doi.org/10.1016/j.ijbiomac.2015.04.066

Keen NT, Bruegger B (1977). Phytoalexins and chemicals that elicit their production in plants. In: Hedin PA (Eds). Host Plant Resistance to Pests. pp 1-26. https://doi.org/10.1021/bk-1977-0062.ch001 DOI: https://doi.org/10.1021/bk-1977-0062.ch001

Khan MI, An X, Dai L, Li H, Khan A, Ni Y (2019). Chitosan-based polymer matrix for pharmaceutical excipients and drug delivery. Current Medicinal Chemistry 26(14):2502-2513. https://doi.org/10.2174/0929867325666180927100817 DOI: https://doi.org/10.2174/0929867325666180927100817

Kou X, Li Y, Wu J, Chen Q, Xue Z (2017). Effects of edible coatings on quality and antioxidant activity of Zizyphus jujuba Miller cv. Dongzao during storage. Transactions of Tianjin University 23(1):51-61. https://doi.org/10.1007/s12209-016-0021-2 DOI: https://doi.org/10.1007/s12209-016-0021-2

Kulikov SN, Lisovskaya SA, Zelenikhin PV, Bezrodnykh EA, Shakirova DR, Blagodatskikh IV, … Tikhonov VE (2014). Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: Molecular weight-activity relationship. European Journal of Medicinal Chemistry 74:169-178. https://doi.org/10.1016/j.ejmech.2013.12.017 DOI: https://doi.org/10.1016/j.ejmech.2013.12.017

Kumaraswamy RV, Kumari S, Choudhary RC, Sharma SS, Pal A, Raliya R, ... Saharan V (2019). Salicylic acid functionalized chitosan nanoparticle: a sustainable biostimulant for plant. International Journal of Biological Macromolecules 123:59-69. https://doi.org/10.1016/j.ijbiomac.2018.10.202 DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.202

Lamb C, Dixon RA (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Biology 48(1):251-275. https://doi.org/10.1146/annurev.arplant.48.1.251 DOI: https://doi.org/10.1146/annurev.arplant.48.1.251

Li K, Xing R, Liu S, Li P (2020). Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. Journal of Agricultural and Food Chemistry 68(44):12203-12211. https://doi.org/10.1021/acs.jafc.0c05316 DOI: https://doi.org/10.1021/acs.jafc.0c05316

Li LH, Deng JC, Deng HR, Liu ZL, Li XL (2010). Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chemical Engineering Journal 160(1):378-382. https://doi.org/10.1016/j.cej.2010.03.051 DOI: https://doi.org/10.1016/j.cej.2010.03.051

Liénart Y, Gautier C, Domard A (1991). Isolation from Rubus cell-suspension cultures of a lectin specific for glucosamine oligomers. Planta 184(1):8-13. https://doi.org/10.1007/BF00208229 DOI: https://doi.org/10.1007/BF00208229

Liu D, Jiao S, Cheng G, Li X, Pei Z, Pei Y, ... Du Y (2018). Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell. International Journal of Biological Macromolecules 111:1083-1090. https://doi.org/10.1016/j.ijbiomac.2018.01.113 DOI: https://doi.org/10.1016/j.ijbiomac.2018.01.113

Liu H, Du Y, Yang J, Zhu H (2004). Structural characterization and antimicrobial activity of chitosan/betaine derivative complex. Carbohydrate Polymers 55(3):291-297. https://doi.org/10.1016/j.carbpol.2003.10.001 DOI: https://doi.org/10.1016/j.carbpol.2003.10.001

Liu J, Zhang X, Kennedy J, Jiang M, Cai Q, Wu X (2019). Chitosan induces resistance to tuber rot in stored potato caused by Alternaria tenuissima. International Journal of Biological Macromolecules 140:851-857. https://doi.org/10.1016/j.ijbiomac.2019.08.227 DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.227

Long L, Tan L, Boi V, Trung T (2018). Antifungal activity of water‐soluble chitosan against Colletotrichum capsici in postharvest chili pepper. Journal of Food Processing and Preservation 42(1):e13339. https://doi.org/10.1111/jfpp.13339 DOI: https://doi.org/10.1111/jfpp.13339

Lopez-Moya F, Suarez-Fernandez M, Lopez-Llorca LV (2019). Molecular mechanisms of chitosan interactions with fungi and plants. International Journal of Molecular Sciences 20(2):332. https://doi.org/10.3390/ijms20020332 DOI: https://doi.org/10.3390/ijms20020332

López-Corona B, Mondaca-Fernández I, Gortáres-Moroyoqui P, Meza-Montenegro M, Balderas-Cortés J, Ruíz Alvarado C, … Rueda-Puente E (2020). Ecofisiología y bioquímica de Salicornia bigelovii (Torr.) por efecto de quitosano-aib bajo condiciones del desierto de Sonora. Polibotánica 49:75-92. https://doi.org/10.18387/polibotanica.49.5 DOI: https://doi.org/10.18387/polibotanica.49.5

Lopez-Moya F, Colom-Valiente MF, Martinez-Peinado P, Martinez-Lopez JE, Puelles E, Sempere-Ortells JM, … Lopez-Llorca LV (2015). Carbon and nitrogen limitation increase chitosan antifungal activity in Neurospora crassa and fungal human pathogens. Fungal Biology 119(2-3):154-169. https://doi.org/10.1016/j.funbio.2014.12.003 DOI: https://doi.org/10.1016/j.funbio.2014.12.003

Loschke DC, Hadwiger LA, Wagoner W (1983). Comparison of mRNA populations coding for phenylalanine ammonia lyase and other peptides from pea tissue treated with biotic and abiotic phytoalexin inducers. Physiological Plant Pathology 23(1):163-173. https://doi.org/10.1016/0048-4059(83)90043-7 DOI: https://doi.org/10.1016/0048-4059(83)90043-7

Lucini L, Baccolo G, Rouphael Y, Colla G, Bavaresco L, Trevisan M (2018). Chitosan treatment elicited defence mechanisms, pentacyclic triterpenoids and stilbene accumulation in grape (Vitis vinifera L.) bunches. Phytochemistry 156:1-8. https://doi.org/10.1016/j.phytochem.2018.08.011 DOI: https://doi.org/10.1016/j.phytochem.2018.08.011

Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2011). Callose deposition: a multifaceted plant defense response. Molecular Plant-Microbe Interactions 24(2):183-193. https://doi.org/10.1094/MPMI-07-10-0149 DOI: https://doi.org/10.1094/MPMI-07-10-0149

Luo Q, Wang Y, Han Q, Ji L, Zhang H, Fei Z, … Wang Y (2019). Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects. Carbohydrate Polymers 209: 266-275. https://doi.org/10.1016/j.carbpol.2019.01.030 DOI: https://doi.org/10.1016/j.carbpol.2019.01.030

Ma Z, Garrido-Maestu A, Jeong KC (2017). Application, mode of action, and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: A review. Carbohydrate Polymers 176:257-265. https://doi.org/10.1016/j.carbpol.2017.08.082 DOI: https://doi.org/10.1016/j.carbpol.2017.08.082

Machałowski T, Wysokowski M, Tsurkan MV, Galli R, Schimpf C, Rafaja D, ... Ehrlich H (2019). Spider chitin: an ultrafast microwave-assisted method for chitin isolation from Caribena versicolor spider molt cuticle. Molecules 24(20):3736. https://doi.org/10.3390/molecules24203736 DOI: https://doi.org/10.3390/molecules24203736

Malerba M, Cerana R (2016). Chitosan effects on plant systems. International Journal of Molecular Sciences 17(7):996.

https://doi.org/10.3390/ijms17070996 DOI: https://doi.org/10.3390/ijms17070996

Malerba M, Cerana R (2018). Recent advances of chitosan applications in plants. Polymers 10(2):118. https://doi.org/10.3390/polym10020118 DOI: https://doi.org/10.3390/polym10020118

Massi F, Torriani S, Borghi L, Toffolatti S (2021). Fungicide resistance evolution and detection in plant pathogens: Plasmopara viticola as a Case Study. Microorganisms 9(1):119. https://doi.org/10.3390/microorganims9010119

Mauch-Mani B, Baccelli I, Luna E, Flors V (2017). Defense priming: an adaptive part of induced resistance. Annual Review of Plant Biology 68:485-512. https://doi.org/10.1146/annurev-arplant-042916-041132 DOI: https://doi.org/10.1146/annurev-arplant-042916-041132

Meena M, Swapnil P, Divyanshu K, Kumar S, Tripathi YN, Zehra A, ... Upadhyay R (2020a). PGPR‐mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology 60(10):828-861. https://doi.org/10.1002/jobm.202000370 DOI: https://doi.org/10.1002/jobm.202000370

Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, ... Marfo TD (2020b). Impact of agrochemicals on soil microbiota and management: A review. Land 9(2):34. https://doi.org/10.3390/land9020034 DOI: https://doi.org/10.3390/land9020034

Meng D, Garba B, Ren Y, Yao M, Xia X, Li M, … Wang Y (2020). Antifungal activity of chitosan against Aspergillus ochraceus and its possible mechanisms of action. International Journal of Biological Macromolecules 158:1063-1070. https://doi.org/10.1016/j.ijbiomac.2020.04.213 DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.213

Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, ... Shibuya N (2007). CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences 104(49):19613-19618. https://doi.org/10.1073/pnas.0705147104 DOI: https://doi.org/10.1073/pnas.0705147104

Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019). Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters 17(4):1667-1692. https://doi.org/10.1007/s10311-019-00904-x DOI: https://doi.org/10.1007/s10311-019-00904-x

Morrison TA, Buxton DR (1993). Activity of phenylalanine ammonialyase, tyrosine ammonia-lyase, and cinnamyl alcohol dehydrogenase in the maize stalks. Crop Science 33(6):1264-1268. https://doi.org/10.2135/cropsci1993.0011183X003300060030x DOI: https://doi.org/10.2135/cropsci1993.0011183X003300060030x

Muthukrishnan S, Murugan I, Selvaraj M (2019). Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydrate Polymers 212:169-177. https://doi.org/10.1016/j.carbpol.2019.02.037 DOI: https://doi.org/10.1016/j.carbpol.2019.02.037

Obianom C, Romanazzi G, Sivakumar D (2019). Effects of chitosan treatment on avocado postharvest diseases and expression of phenylalanine ammonia-lyase, chitinase and lipoxygenase genes. Postharvest Biology and Technology 147:214-221. https://doi.org/10.1016/j.postharvbio.2018.10.004 DOI: https://doi.org/10.1016/j.postharvbio.2018.10.004

Oh JW, Chun SC, Chandrasekaran M (2019). Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy 9(1):21. https://doi.org/10.3390/agronomy9010021 DOI: https://doi.org/10.3390/agronomy9010021

Palma‐Guerrero J, Lopez‐Jimenez JA, Pérez‐Berná AJ, Huang IC, Jansson HB, Salinas J, ... Lopez‐Llorca LV (2010). Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology 75(4):1021-1032. https://doi.org/10.1111/j.1365-2958.2009.07039.x DOI: https://doi.org/10.1111/j.1365-2958.2009.07039.x

Peter S, Lyczko N, Gopakumar D, Maria HJ, Nzihou A, Thomas S (2020). Chitin and chitosan-based composites for energy and environmental applications: a review. Waste and Biomass Valorization 1-28. https://doi.org/10.1007/s12649-020-01244-6 DOI: https://doi.org/10.1007/s12649-020-01244-6

Philibert T, Lee B, Fabien N (2017). Current status and new perspectives on chitin and chitosan as functional biopolymers. Applied Biochemistry and Biotechnology 181(4):1314-1337.

Rahman M, Mukta JA, Sabir AA, Gupta DR, Mohi-Ud-Din M, Hasanuzzaman M, ... Islam MT (2018). Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PloS One 13(9):e0203769. https://doi.org/10.1371/journal.pone.0203769 DOI: https://doi.org/10.1371/journal.pone.0203769

Rajan A, Kurup JG, Abraham TE (2005). Biosoftening of arecanut fiber for value added products. Biochemical Engineering Journal 25(3):237-242. https://doi.org/10.1016/j.bej.2005.05.011 DOI: https://doi.org/10.1016/j.bej.2005.05.011

Rasti H, Parivar K, Baharara J, Iranshahi M, Namvar F (2017). Chitin from the mollusc Chiton: extraction, characterization and chitosan preparation. Iranian Journal of Pharmaceutical Research 16(1):366-379.

Rocha M, Coimbra M, Nunes C (2017). Applications of chitosan and their derivatives in beverages: a critical review. Current Opinion in Food Science 15: 61-69. https://doi.org/10.1016/j.cofs.2017.06.008 DOI: https://doi.org/10.1016/j.cofs.2017.06.008

Santos V, Marques N, Maia P, Lima M, Franco L, Campos-Takaki G (2020). Seafood waste as attractive source of chitin and chitosan production and their applications. International Journal of Molecular Sciences 21(12):4290. https://doi.org/10.3390/ijms21124290 DOI: https://doi.org/10.3390/ijms21124290

Sathiyabama M, Parthasarathy R (2016). Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydrate Polymers 151:321-325. https://doi.org/10.1016/j.carbpol.2016.05.033 DOI: https://doi.org/10.1016/j.carbpol.2016.05.033

Sayari N, Sila A, Abdelmalek B, Abdallah R, Ellouz-Chaabouni S, Bougatef A, … Balti R (2016). Chitin and chitosan from the Norway lobster by-products: Antimicrobial and anti-proliferative activities. International Journal of Biological Macromolecules 87:163-171. https://doi.org/10.1016/j.ijbiomac.2016.02.057 DOI: https://doi.org/10.1016/j.ijbiomac.2016.02.057

Schelegueda LI, Zalazar AL, Gliemmo MF, Campos CA (2016). Inhibitory effect and cell damage on bacterial flora of fish caused by chitosan, nisin and sodium lactate. International Journal of Biological Macromolecules 83:396-402. https://doi.org/10.1016/j.ijbiomac.2015.11.033 DOI: https://doi.org/10.1016/j.ijbiomac.2015.11.033

Shamshina JL, Kelly A, Oldham T, Rogers RD (2020). Agricultural uses of chitin polymers. Environmental Chemistry Letters 18:53-60. https://doi.org/10.1007/s10311-019-00934-5 DOI: https://doi.org/10.1007/s10311-019-00934-5

Silva WB, Silva GMC, Santana DB, Salvador AR, Medeiros DB, Belghith I, ... Misobutsi GP (2018). Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chemistry 242:232-238. https://doi.org/10.1016/j.foodchem.2017.09.052 DOI: https://doi.org/10.1016/j.foodchem.2017.09.052

Soliva RC, Elez P, Sebastián M, Martı́n O (2000). Evaluation of browning effect on avocado purée preserved by combined methods. Innovative Food Science and Emerging Technologies 1(4):261-268. https://doi.org/10.1016/S1466-8564(00)00033-3 DOI: https://doi.org/10.1016/S1466-8564(00)00033-3

Song Z, Li G, Guan F, Liu W (2018). Application of chitin/chitosan and their derivatives in the papermaking industry. Polymers 10(4):389. https://doi.org/10.3390/polym10040389 DOI: https://doi.org/10.3390/polym10040389

Spadaro D, Droby S (2016). Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science and Technology 47:39-49. https://doi.org/10.1016/j.tifs.2015.11.003 DOI: https://doi.org/10.1016/j.tifs.2015.11.003

Srinivasan H, Kanayairam V, Ravichandran R (2018). Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1. International Journal of Biological Macromolecules 107:662-667. https://doi.org/10.1016/j.ijbiomac.2017.09.035 DOI: https://doi.org/10.1016/j.ijbiomac.2017.09.035

Sun C, Fu D, Jin L, Chen M, Zheng X, Yu T (2018). Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydrate Polymers 199:341-352. https://doi.org/10.1016/j.carbpol.2018.07.045 DOI: https://doi.org/10.1016/j.carbpol.2018.07.045

Taşkın P, Canısağ H, Şen M (2014). The effect of degree of deacetylation on the radiation induced degradation of chitosan. Radiation Physics and Chemistry 94:236-239. https://doi.org/10.1016/j.radphyschem.2013.04.007 DOI: https://doi.org/10.1016/j.radphyschem.2013.04.007

Tolaimate A, Desbrieres J, Rhazi M, Alagui A (2003). Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer 44(26):7939-7952. https://doi.org/10.1016/j.polymer.2003.10.025 DOI: https://doi.org/10.1016/j.polymer.2003.10.025

Uragami T, Saito T, Miyata T (2015). Pervaporative dehydration characteristics of an ethanol/water azeotrope through various chitosan membranes. Carbohydrate Polymers 120:1-6. https://doi.org/10.1016/j.carbpol.2014.11.032 DOI: https://doi.org/10.1016/j.carbpol.2014.11.032

Vanti GL, Masaphy S, Kurjogi M, Chakrasali S, Nargund VB (2020). Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. International Journal of Biological Macromolecules 156:1387-1395. https://doi.org/10.1016/j.ijbiomac.2019.11.179 DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.179

Varamin JK, Fanoodi F, Sinaki JM, Rezvan S, Damavandi A (2020). Foliar application of chitosan and nano-magnesium fertilizers influence on seed yield, oil content, photosynthetic pigments, antioxidant enzyme activities of sesame (Sesamum indicum L.) under water-limited conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(4):2228-2243. https://doi.org/10.15835/nbha48411852 DOI: https://doi.org/10.15835/nbha48411852

Verlee A, Mincke S, Stevens CV (2017). Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers 164:268-283. https://doi.org/10.1016/j.carbpol.2017.02.001 DOI: https://doi.org/10.1016/j.carbpol.2017.02.001

Vinsova J, Vavrikova E (2008). Recent advances in drugs and prodrugs design of chitosan. Current Pharmaceutical Design 14(13):1311-1326.

Vlot AC, Sales JH, Lenk M, Bauer K, Brambilla A, Sommer A, ... Nayem S (2020). Systemic propagation of immunity in plants. New Phytologist 229:1234-1250. https://doi.org/10.1111/nph.16953 DOI: https://doi.org/10.1111/nph.16953

Waldmann T, Jeblick W, Kauss H (1988). Induced net Ca2+ uptake and callose biosynthesis in suspension-cultured plant cells. Planta 173(1):88-95. https://doi.org/10.1007/BF00394492 DOI: https://doi.org/10.1007/BF00394492

Wang K, Li T, Chen S, Li Y, Rashid A (2020a). The biochemical and molecular mechanisms of softening inhibition by chitosan coating in strawberry fruit (Fragaria x ananassa) during cold storage. Scientia Horticulturae 271:109483. https://doi.org/10.1016/j.scienta.2020.109483 DOI: https://doi.org/10.1016/j.scienta.2020.109483

Wang L, Wu H, Qin G, Meng X (2014). Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit. Food Control 41:56-62. https://doi.org/10.1016/j.foodcont.2013.12.028 DOI: https://doi.org/10.1016/j.foodcont.2013.12.028

Wang Q, Zuo JH, Wang Q, Yang NA, Gao LP (2015). Inhibitory effect of chitosan on growth of the fungal phytopathogen, Sclerotinia sclerotiorum, and sclerotinia rot of carrot. Journal of Integrative Agriculture 14(4):691-697. https://doi.org/10.1016/S2095-3119(14)60800-5 DOI: https://doi.org/10.1016/S2095-3119(14)60800-5

Wang W, Xue C, Mao X (2020b). Chitosan: Structural modification, biological activity and application. International Journal of Biological Macromolecules 164:4532-4546. https://doi.org/10.1016/j.ijbiomac.2020.09.042 DOI: https://doi.org/10.1016/j.ijbiomac.2020.09.042

Wang X, Du Y, Liu H (2004). Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydrate Polymers 56(1):21-26. https://doi.org/10.1016/j.carbpol.2003.11.007 DOI: https://doi.org/10.1016/j.carbpol.2003.11.007

Wang Y, Li B, Zhang X, Peng N, Mei Y, Liang Y (2017). Low molecular weight chitosan is an effective antifungal agent against Botryosphaeria sp. and preservative agent for pear (Pyrus) fruits. International Journal of Biological Macromolecules 95:1135-1143. https://doi.org/10.1016/j.ijbiomac.2016.10.105 DOI: https://doi.org/10.1016/j.ijbiomac.2016.10.105

Xia W, Liu P, Zhang J, Chen J (2011). Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids 25(2):170-179. https://doi.org/10.1016/j.foodhyd.2010.03.003 DOI: https://doi.org/10.1016/j.foodhyd.2010.03.003

Yang H, Zhang Y, Zhou F, Guo J, Tang J, Han Y, ... Fu C (2021). Preparation, bioactivities and applications in food industry of chitosan-based maillard products: A review. Molecules 26(1):166. https://doi.org/10.3390/molecules26010166 DOI: https://doi.org/10.3390/molecules26010166

Yang T, Poovaiah B (2002). Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences 99(6):4097-4102. https://doi.org/10.1073/pnas.052564899 DOI: https://doi.org/10.1073/pnas.052564899

Ye W, Sun Y, Tang Y, Zhou W (2021). Biocontrol potential of a broad-spectrum antifungal strain Bacillus amyloliquefaciens B4 for postharvest loquat fruit storage. Postharvest Biology and Technology 174:111439. https://doi.org/10.1016/j.postharvbio.2020.111439 DOI: https://doi.org/10.1016/j.postharvbio.2020.111439

Yin H, Du Y, Dong Z (2016). Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors. Frontiers in Plant Science 7:522. https://doi.org/10.3389/fpls.2016.00522 DOI: https://doi.org/10.3389/fpls.2016.00522

Yin H, Du Y, Zhang J (2009). Low molecular weight and oligomeric chitosans and their bioactivities. Current Topics in Medicinal Chemistry 9(16): 1546-1559. https://doi.org/10.2174/156802609789909795 DOI: https://doi.org/10.2174/156802609789909795

Yin H, Li Y, Zhang HY, Wang WX, Lu H, Grevsen K, ... Du Y (2013). Chitosan oligosaccharides-triggered innate immunity contributes to oilseed rape resistance against Sclerotinia sclerotiorum. International Journal of Plant Sciences 174(4):722-732. https://doi.org/10.1086/669721 DOI: https://doi.org/10.1086/669721

Zuppini A, Baldan B, Millioni R, Favaron F, Navazio L, Mariani P (2004). Chitosan induces Ca2+-mediated programmed cell death in soybean cells. New Phytologist 161(2):557-568.




How to Cite

TORRES-RODRIGUEZ, J. A. ., REYES-PÉREZ, J. J., CASTELLANOS, T. ., ANGULO, C. ., QUIÑONES-AGUILAR, E. E. ., & HERNANDEZ-MONTIEL, L. G. . (2021). A biopolymer with antimicrobial properties and plant resistance inducer against phytopathogens: Chitosan. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12231. https://doi.org/10.15835/nbha49112231



Review Articles
DOI: 10.15835/nbha49112231

Most read articles by the same author(s)