Archaea, bacteria and termite, nitrogen fixation and sustainable plants production

  • Wenli SUN Chinese Academy of Agricultural Sciences,Biotechnology Research Institute, Beijing 100081 (CN)
  • Mohamad H. SHAHRAJABIAN Chinese Academy of Agricultural Sciences,Biotechnology Research Institute, Beijing 100081 (CN)
  • Qi CHENG Chinese Academy of Agricultural Sciences,Biotechnology Research Institute, Beijing 100081; Hebei Agricultural University, College of Life Sciences, Baoding, Hebei, 071000, China; Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, Baoding, Hebei 071000 (CN)
Keywords: Archaea, Azotobacter, bacteria, nitrogenase, nitrogen fixation, termite

Abstract

Certain bacteria and archaea are responsible for biological nitrogen fixation. Metabolic pathways usually are common between archaea and bacteria. Diazotrophs are categorized into two main groups namely: root-nodule bacteria and plant growth-promoting rhizobacteria. Diazotrophs include free living bacteria, such as Azospirillum, Cupriavidus, and some sulfate reducing bacteria, and symbiotic diazotrophs such Rhizobium and Frankia. Three types of nitrogenase are iron and molybdenum (Fe/Mo), iron and vanadium (Fe/V) or iron only (Fe). The Mo-nitrogenase have a higher specific activity which is expressed better when Molybdenum is available. The best hosts for Rhizobium legumiosarum are Pisum, Vicia, Lathyrus and Lens; Trifolium for Rhizobium trifolii; Phaseolus vulgaris, Prunus angustifolia for Rhizobium phaseoli; Medicago, Melilotus and Trigonella for Rhizobium meliloti; Lupinus and Ornithopus for Lupini, and Glycine max for Rhizobium japonicum. Termites have significant key role in soil ecology, transporting and mixing soil. Termite gut microbes supply the enzymes required to degrade plant polymers, synthesize amino acids, recycle nitrogenous waste and fix atmospheric nitrogen. The positive effects of Arbuscular mycorrhizal (AM) fungi such as growth promotion, increased root length, leaf area, stem diameter, transplant performance and tolerance to stresses have been reported previously.

Metrics

Metrics Loading ...

References

Abd-Alla MH, El-Enany AWE, Nafady NA, Khalaf DM, Morsy FM (2014). Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiological Research 169:49-58. https://doi.org/10.1016/j.micres.2013.07.007

Abdollahi M, Soleymani A, Shahrajabian MH (2018). Evaluation of yield and some of physiological indices of potato cultivars in relation to chemical, biological and manure fertilizers. Cercetari Agronomice in Moldova 51(2):53-66. https://doi.org/10.2478/cerce-2018-0016

Aislabie J, Deslippe JR (2013). Soil microbes and their contribution to soil services. Soil microbes and their contribution to soil service. In: Dymond JR (Ed). Ecosystem Services in New Zealand- cCnditions and Trends. Mannaki Whenua Press, Lincoln, New Zealand.

Alexander T, Toth R, Meier R, Weber HC (1988). Dynamics of arbuscule development and degeneration in onion, bean and tomato with references to vesicular-arbuscular mycorrhizal in grasses. Canadian Journal of Botany 67:2505-2513. https://doi.org/10.1139/b89-320

Allen ON, Allen EK (1981). The Leguminosae. University of Wisconsin Press, Madison, WI, pp 812. https://doi.org/10.1002/fedr.4910950119

Aminpanah H, Firouzi S (2019). Fertilizer management using plant growth-promoting rhizobacteria in rice fields. International Journal of Agricultural Management and Development 9(1):67-76.

Annison G, Couperwhite I (1986). Effect of limiting substrate concentration, growth rate and aeration

on alginate composition and production by Azotobacter vinelandii in continuous culture. Food Hydrocoll 1:101-111. https://doi.org/10.1016/s0268-005x(86)80012-1

Aquilianti L, Favilli F, Clementi F (2004). Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. Soil Biology and Biochemistry 36:1475-1483. https://doi.org/10.1016/j.soilbio.2004.04.024

Argandona M, Fernandez-Carazo R, Llamas I, Martinez-Checa F, Caba JM, Quesada E, Moral AD (2005). The moderately halophilic bacterium Halomonas maura is a free-living diazotroph. FEMS Microbiol Letters 244:69-74. https://doi.org/10.1016/j.femsle.2005.01.019

Azcon R, Barea JM (1975). Synthesis of auxins, gibberellins and cytokinins by Azotobacter vinelandii and Azotobacter beijerinckii related to effects produced on tomato plants. Plant and Soil 43:609-619. https://doi.org/10.1007/bf01928522

Azcon-Aguilar C, Jaizme-Vega MC, Calvet C (2002). The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogen. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (Eds). Mycorrhizal Technology in Agriculture: From Genes to Bioproducts. Birkhauser Verlag AG, Basel, Switzerland, pp 187-197. https://doi.org/10.1007/978-3-0348-8117-3-15

Bahadur A, Jin Z, Long X, Jiang S, Zhang Q, Pan J, … Feng H (2019). Arbuscular mycorrhizal fungi alter plant interspecific interaction under nitrogen fertilization. European Journal of Soil Biology 93:103094. http://doi.org/10.1016/j.ejsobi.2019.103094

Bahulikar RA, Torres-Jerez I, WorleyE, Craven K, Udvardi MK (2014). Diversity of nitrogen-fixing bacteria associated with Switchgrass in the native tallgrass praire of Northern Oklahoma. Applied and Environmental Microbiology 80(18):5636-5643. https://doi.org/10.1128/aem.02091-14

Balandreau J (1986). Ecological factors and adaptive process in N2-fixing bacterial populations of the plant environment. Plant and Soil 90:73. https://doi.org/10.1007/bf02277388

Bama PS, Ravindran AD (2018). Influence of combined termite mound materials and inorganic fertilizers on growth parameters of maize under non sterilized pot culture study. Elixir Applied Zoology 125:52303-52305.

Barea JM, Werner D, Azcon-Guilar C, Azcon R (2005). Interactions of arbuscular mycorrhiza and nitrogen fixing symbiosis in sustainable agriculture. In: Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment. Dordrecht: Springer, pp 199-222. https://doi.org/10.1007/1-4020-3544-6-10

Barns SM, Delwiche CF, Palmer JD, Pace NR (1996). Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proceedings of the National Academy of Sciences of the USA 93:9188-9193. https://doi.org/10.1073.pmas.93.17.9188

Barazetti AR, Simionato AS, Navarro MOP, dos Santos IMO, Modolon F, de Lima Andreata MF, … Andrade G (2019). Formulations of arbuscular mycorrhizal fungi inoculums applied to soybean and corn plants under controlled and field conditions. Applied Soil Ecology 142:25-33. https://doi.org/10.1016/j.apsoil.2019.05.015

Bashan Y, De-Bashan LE (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth- a critical assessment. Advances in Agronomy 108:77-136. https://doi.org/10.1016/s0065-2113(10)08002-8

Batalha L, Da Silva Filho D, Martius C (1995). Using termite nests as a source of organic matter in agrosilvicultural production systems in Amazonia. Scientia Agricola 52:318-325. https://doi.org/10.1590/s0103-90161995000200019

Bauer JT, Kleczewski NM, Bever JD, Clay K, Reynolds HL (2012). Nitrogen-fixing bacteria, arbuscular mycorrhizal fungi, and the productivity and structure of prairie grassland communities. Oecologia 170:1089-1098. https://doi.org/10.1007/s00442-012-236-3

Becking J (2006). The family Azotobacteraceae. Prokaryotes 6:759-783. https://doi.org/10.1007/0-387-30746-x-26

Bellenger JP, Xu Y, Zhang X, Morel FMM, Kraepiel AML (2014). Possible contribution of alternative nitrogenase to nitrogen fixation by asymbiotic N2-fixing bacteria in soils. Soil Biology and Biochemistry 69:413-420. https://doi.org/10.1016/j.soilbio.2013.11.015

Benavides M, Aristegui J, Agawin NSR, Alvarez-Salgado XA, Alvarez M, Troupin C (2013). Low contribution of N2 fixation to new production and excess nitrogen in the subtropical northeast Atlantic margin. Deep-Sea Research I 81:36-48. https://doi.org/10.1016/j.dsr.2013.07.004

Benndorf R, Guo H, Sommerwerk E, Weigel C, Garcia-Altares M, Martin K, … Poulsen M (2018). Natural products from actinobacteria associated with fungus-growing termites. Antibiotics 7:83. https://doi.org/10.3390/antibiotics7030083

Bentley BL (1984). Nitrogen fixation in termites: fate of newly fixed nitrogen. Journal of Insect Physiology 40:653-655. https://doi.org/10.1016/0022-1910(84)90050-7

Bergmann D, Zehfus M, Zierer L, Smith B, Gabel M (2009). Grass rhizosheaths: associated bacterial communities and potential for nitrogen fixation. Western North American Naturalist 69:105-114. https://doi.org/10.3398/064.069.0102

Betancourt DA, Loveless TM, Brown JW, Bishop PE (2008). Characterization of diazotrophs containing Mo-independent nitrogenase, isolated from diverse natural environments. Applied and Environmntal Microbiology 74:3471-3480. https://doi.org/10.1128/aem.02694-07

Bignell DE (2000). Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (Eds). Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht, Springer, pp 189-208. https://doi.org/10.1007/978-94-017-3223-9-9

Bishop PE, Premakumar R, Dean DR, Jacobson MR, Chnisnell JR, Rizzo TM, Kopczynski J (1986). Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 232:92-94. https://doi.org/10.1126/science.232.4746.92

Bishop PE, Premakumar R (1992). Alternative nitrogen fixation systems. In: Stacey G, Burris RH, Evans DJ (Eds). Biological Nitrogen Fixation. Chapman & Hall, New York, pp 736-762.

Biswas B, Gresshoff PM (2014). The role of symbiotic nitrogen fixation in sustainable production of biofuels. International Journal of Molecular Sciences 15:7380-7397. https://doi.org/10.3390/ijms15057380

Boiardi JL (1994). Metabolic cost of nitrogen incorporation by N2-fixing Azotobacter vinelandii is affected by the culture pH. Biotechnology Letters 16:1195-1198. https://doi.org/10.1007/bf01020850

Boyd ES, Peters JW (2013). New insights into the evolutionary history of biological nitrogen fixation. Frontiers in Microbiology 4:201. https://doi.org/10.3389/fmicb.2013.00201

Braker G, Conrad R (2011). Diversity, structure and size of N2O-producing microbial communities in soils-what matters for their functioning? In: Allen SS, Laskin I, Geoffrey MG (Eds). Advances in Applied Microbiology. Academic Press, Chapter 2, pp 33-70. https://doi.org/10.1016/b978-0-12-387046-9.00002-5

Brauman A (2000). Effect of gut transit and mound deposit on soil organic matter transformation in the soil feeding termite: a review. European Journal of Soil Biology 36:117-125. https://doi.org/10.1016/s1164-5563(00)01058-x

Brauman A, Majeed MZ, Buatois B, Robert A, Pablo AL, Miambi (2015). Nitrous oxide (N2O) emissions by termites: does the feeding guild matter? PLoS One 10(12):e01443440. https://doi.org/10.1371/journal.pone.0144340

Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973). Nitrogen fixation in termites. Nature 244:577-580.

Breznak JA (2002). Phylogenetic diversity and physiology of termite gut spirochetes. Integrative and Comparative Biology 42:313-319. https://doi.org/10.1093/icb/42.2.313

Broumand P, Rezaei A, Soleymani A, Shahrajabian MH, Noory A (2010). Influence of forage clipping and top dressing of nitrogen fertilizer on grain yield of cereal crops in dual purpose cultivation system. Research on Crops 11(3):603-613. https://doi.org/10.2134/agronj2015.0447

Bru D, Ramette A, Saby NP, Dequiedt S, Ranjard L, Jolivet C, … Philippot L (2011) Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME Journal 5:532-542. https://doi.org/10.1038/ismej.2010.130

Brune A, Emerson D, Breznak JA (1995). The termite gut microflora as an oxygen sink – microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Applied and Environmental Microbiology 61:2681-2687. https://doi.org/10.1128/aem.61.7.2681.1995

Brune A, Ohkuma M (2010). Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (Eds). Biology of Termites: a Modern Synthesis. Dordrecht, Springer, pp 439-475. https://doi.org/10.1007/978-90-481-3977-4-16

Bucking H, Kafle A (2015). Role of arbusuclar mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587-612. https://doi.org/10.3390/agronomy5040587

Burbano CS, Liu Y, Rosner KL, Reis VM, Caballero-Mellado J, Rein-hold-Hurek B, Hurek T (2011). Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. Environmental Microbiology Reports 3:383-389. https://doi.org/10.1111/j.1758-2229-2010.00238.x

Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997). Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221-1229. https://doi.org/10.1126/science.276.5316.1221

Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, … Arp D (2003). Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotrophy Nitrosomonas europaea. Journal of Bacteriology 185:2759-2773. https://doi.org/10.1128/jb.185.9.2759-2773.2003

Che R, Deng Y, Wang F, Wang W, Xu Z, Hao Y, … Cui X (2018). Autotrophic and symbiotic diacotrophs dominate nitrogen-fixing communities in Tibetan grassland soils. Science of Total Environment 639:997-1006. https://doi.org/10.1016/j.scitotenv.2018.05.238

Chen Y-LL, Chen H-Y, Lin Y-H, Yong T-C, Taniuchi Y, Tuo S-H (2014). The relative contributions of unicellular and filamentous diazotrophs to N2 fixation in the South China Sea and the upstream Kuroshio. Deep-Sea Research I 85:56-71. https://doi.org/10.1016/j.dsr.2013.11.006

Chen T-Y, ChenY-LL, Sheu D-S, Chen H-Y, Lin Y-H, Shiozaki T (2019). Community and abundance of heterotrophic diazotrophs in the northern South China Sea: revealing the potential importance of a new alphaproteobacterium in N2 fixation. Deep-Sea Research Part I 143:104-114. https://doi.org/10.1016/j.dsr.2018.11.006

Chien YT, Zinder SH (1994). Cloning, DNA-sequencing, and characterization of a nifD-homologous gene from the archaeon methanosaticina barkeri-227 which resembles nifD from the eubacterium Clostridium pasteurianum. Journal of Bacteriology 176:6590-6598. https://doi.org/10.1016/j.dsr.1994.06.001

Chisnell JR, Premakumar R, Bishop PE (1988). Purification of the second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. Journal of Bacteriology 170:27-33. https://doi.org/10.1128/jb.170.1.27-33.1988

Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2007). Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus a perennial grass of thar desert, India. Microbil Ecology 54:82-90. https://doi.org/10.1007/s00248-006-9174-1

Chowdhury-Paul S, Pando-Robles V, Jimenez-Jacinto V, Segura D, Espin G, Nunez C (2018). Proteomic analysis revealed proteins induced upon Azotobacter vinelandii encystment. Journal of Proteomics181:47-59. https://doi.org/10.1016/j.jprot.2018.03.031

Clement F (1997). Alginate production by Azotobacter vinelandii. Critical Reviews in Biotechnology 17:327-361. https://doi.org/10.3109/07388559709146618

Cotta SR, Dias ACF, Marriel IE, Andreote FD, Seldin L, Elsas JFV (2014). Different effects of transgenic maize and nontransgenic maize on nitrogen-transforming archaea and bacteria in tropical soils. Applied and Environmental Microbiology 80(20):6437-6445. https://doi.org/10.1128/aem.01778-14

Curtis AD, Waller DA (1998). Seasonal patterns of nitrogen fixation in termites. Functional Ecology 12:803-807. https://doi.org/10.1046/j.1365-2435.1998.00248.x

Davis SC, Parton WJ, Dohleman FG, Smith CM, Del Grosso S, Kent AD, DeLucia EH (2010). Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus giganteusagro-ecossytem. Ecosystems 13:144-156. https://doi.org/10.1007/s10021-009-9306-9

Dawes TZ (2010). Reestablishment of ecological functioning by mulching and termite invasion in a degraded soil in an Australian savanna. Soil Biology and Biochemistry 42:1825-1834. https://doi.org/10.1016/j.soilbio.2010.06.023

De Faria SM, Diedhiou AG, Lima HC, Ribeiro RD, Galiana A, Castilho AF, Henriques C (2010). Evaluation the nodulation status of leguminous species from the Amazonian forest of Brazil. Journal of Experimental Botany 62:3119-3127. https://doi.org/10.1093/jxb/erq142

Dent D, Cocking E (2017). Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: The Greener Nitrogen Revolution. Agricultura and Food Security 6:7. https://doi.org/10.1186/s40066-016-0084-2

Devi R, Thakur R (2018). Screening and identification of bacteria for growth promoting traits from termite mound soil. Journal of Pharmacognosy and Phytocemistry 7:1681-1686.

Din M, Nelofer R, Salman M, Abdullah FH, Khan, Khan A, Ahmad M, Jalil F, Din JU, Khan M (2019). Production of nitrogen fixing Azotobacter (SR-$) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnology Reports 22:e00323. https://doi.org/10.1016/j.btre.2019.e00323

Dixon R, Kahn D (2004). Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology 2:621. https://doi.org/10.1038/nrmicro854

Dobereiner J, Day JM (1975). Nitrogen fixation in rhizosphere of grasses. In: Stewart WDP (Ed). Nitrogen Fixation by Free-Living Microorganisms. Cambridge University Press, pp 39-56.

Dobereiner J (1995). Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. In: Alef K, Nannipieri P (Eds). Methods in Applied Soil Microbiology and Biochemistry, Academic Press, London, pp 134-141.

Dominati E, Patterson M, MacKay A (2010). A framework for classifying and quantifying natural capital and ecosystem services of soils. Ecological Economics 69:1858-1868. https://doi.org/10.1016/j.ecolecon.2010.05.002

Dong H, Li W, Eneji AE, Zhang D (2012). Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Research 126:137-144. https://doi.org/10.1016/j.fcr.2011.10.005

Dutt S, Sharma SD, Kumar P (2013a). Inoculation of apricot seedlings with indigenous arbuscular mycorrhizal fungi in optimum phosphorus fertilization for quality growth attributes. Journal of Plant Nutrition 36:15-31. https://doi.org/10.1080/01904167.2012.732648

Dutt S, Sharma SD, Kumar P (2013b). Arbuscular mycorrhizas and Zn fertilization modify growth and physiological behavior of apricot (Prunus armeniaca L.). Scientia Horticulturae 155:97-104. https://doi.org/10.1016/j.scienta.2013.03.012

Eady RR (2003). Current status of structure function relationships of vanadium nitrogenase. Coordination Chemistry Reviews 237:23-30. https://doi.org/10.1016/s0010-8545(02)00248-5

Egamberdieva D, Kucharova Z (2008). Cropping effects on microbial population and nitrogenase activity in saline arid soil. Turkish Journal of Biology 32:85-90.

Evans JR (1983). Nitrogen and photosynthesis in the flag leaf of wheat. Plant Physiology 72:297-302.

Enagbonma BJ, Babalola OO (2019). Environmental sustainability: a review of termite mound soil material and its bacteria. Sustainability 11:3847. https://doi.org/10.3390/su11143847

Fall S, Brauman A, Chotte J-L (2001). Comparative distribution of organic matter in particle and aggregate size fractions in the mounds of termites with different feeding habits in Senegal: Cubitermesniokoloensis and Macrotermes bellicosus. Applied Soil Ecology 17:131-140. https://doi.org/10.1007/s13213-019-1439-2

Fekete FA, Lanzi RA, Beaulieu JB, Longcope DC, Sulya AW, Hayes RN, Mabbott GA (1989). Isolation and preliminary characterization of hydroxamic acids formed by nitrogen-fixing Azotobacter chroococcum B-8. Applied and Environmental Microbiology 55(2):298-305. https://doi.org/10.1128/aem.55.2.298-305.1989

Feng M, Adams JM, Fan K, Shi Y, Sun R, Wang D, … Chu H (2018). Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biology and Biochemistry 126:151-158. https://doi.org/10.1016/j,soilbio.2018.08.021

Fischer D, Pfitzner B, Schmid M, Simoes-Araujo JL, Reis VM, Pereira W, … Hartmann A (2012). Molecular characterization of the diazotrophic bacterial community unioculated and inoculated field-grown sugarecane (Saccharum sp.). Plant Soil 356:83-99. https://doi.org/10.1007/s11104-011-0812-0

Foster R, Subramaniam A, Mahaffey C, Carpenter E, Capone D, Zehr J (2007). Influence of the Amazon River plume on distribution of free-living and symbiotic cyanobacteria in the western tropical North Atlantic Ocean. Limnol. Oceanogr 52(2):517-532. https://doi.org/10.1007/s11104-011-1023-4

Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis LJ, … Voss M (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1621):20130164. https://doi.org/10.1098/rstb.2013.0164

French JRJ, Turner GL, Bradbury JF (1976). Nitrogen fixation by bacteria from the hindgut of termites. Journal of General Microbiology 95:202-206.

Frohlich J, Koustiane C, Kampfer P, Rossello-Mora R, Valens M, Berchtold M, … Konig H (2007). Occurrence of rhizobia in the gut of the higher termite Nasutitermesnigriceps. Systematic and Applied Microbiology 30:68-74. https://doi.org/10.1016/j.syapm.2006.03.001

Fuentes-Ramirez LE, Jimenez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J (1993). Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant and Soil 154(2):145-150. https://doi.org/10.1007/bf00012519

Fuhita Y, Takahashi Y, Chuganji M, Matsubara H (1992). The nifH-like (frxC) gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacterium Plectonemaboryanum. Plant and Cell Physiology 33:81-92. https://doi.org/10.1093/oxfordjournals.pcp.a078224

Gaby JC, Buckley DH (2014). A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database. https://doi.org/10.1093/database/bau001

Garba M, Cornelis WM, Steppe K (2011). Effect of termite mound material on the physical properties of sandy soil and on the growth characteristics of tomato (Solanum lycopersicumL.) in semi-arid Niger. Plant and Soil 338:451-466. https://doi.org/10.1007/s11104-010-0558-0

Garcias-Bonet N, Arrieta JM, Duarte CM, Marba N (2016). Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots. Auqtic Botany 131:57-60. https://doi.org/10.1016/j.aquabot.2016.03.002

Garg SK, Bhatnagar A, Kalla A, Narula N (2001). In vitro nitrogen fixation, phosphate solubilization, survival and nutrient release by Azotobacter strains in an aquatic system. Bioresource Technology 80:101-109. https://doi.org/10.3354/meps07714

Garg N, Pandey R (2016). High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. Fungal Ecology 21:57-67. https://doi.org/10.1016/j.funeco-2016.04.001

Gauri SS, Mandal SM, Dey S, Pati BR (2012). Biotransformation of p-coumaric acid and 2,4-dichlorophenoxy acetic acid by Azotobacter sp. strain SSB81. Bioresource Technology 126:350-353. https://doi.org/10.1016.j.biortech.2012.09.097

Gholami S, Shahsavani S, Nezarat S (2009). The effect of plant growth promoting rhizobacteria (PGRP) on germination, seedling growth and yield of maize. International Journal of Biological Life Sciences 1(1):35-40. https://doi.org/10.15258/sst.2015.43.3.04

Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, … De Ley J (1989). Acetobacter diazotrophicus, a nitrogen-fixing acid bacterium associated with sugarcane. International Journal of Systematic Bacteriology 48:327.

Gohre V, Paszkowski U(2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115-1122. https://doi.org/10.1007/s00425-006-0225-0

Goicoechea N, Merino S, Sanchez-Diaz M (2005). Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. Journal of Plant Physiology 162:27-35. https://doi.org/10.1016/j.jplph.2004.03.011

Gomathi V, Ramalakshmi A, Ramasamy K (2018). Microbial diversity and fungal symbiont of termite ecosystem. International Journal of Current Microbiology and Applied Sciences 7(12):3283-3295. https://doi.org/10.20546/ijcmas.2018.712.380

Gomez F, Furuya K, Takeda S (2005). Distribution of the cyanobacterium Richeliaintra cellularis as an epiphyte of the diatom Chaetoceroscompressus in the western Pacific Ocean. Journal of Plankton Research 27:323-330. https://doi.org/10.1093/[;ankt/fbi007

Gonzales-Lopez J, Martinez Toledo MV, Reina S, Salmeron V (1991). Root exudates of maize on production of auxins, gibberellins, cytokinins, amino acids and vitamins by Azotobacter chroococcum chemically defined media and dialyzed soil media. Toxicology and Environmental Chemistry 33:69-78.

Goss MJ, de Varennes A (2012). Soil disturbance reuces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biology and Biochemistry 34:1167-1173. https://doi.org/10.1016/s0038-0717(02)00053-6

Guether M, Neuhaeuser B, Balestrini R, Dynowski M, Ludeqig U, Bonfante P (2009). A mycorrhizal-specific ammonium transporter from Lotus japnicus acquires nitrogen released by asrbuscular mycorrhizal fungi. Plant Physiology 150:73-83. https://doi.org/10.1104/pp.109.136390

Guisande-Collazo A, Gonzalez K, Souza-Alonso P (2016). Impact of an invasive nitrogen-fixing tree on arbuscular mycorrhizal fungi and the development of native species. AoB Plants 8:plw018. https://doi.org/10.1093/aobpla/plw018

Gutierrez-Zamora ML, Martinez-Romero E (2001). Natural endophytic association between Rhizobium etli and maize (Zea mays L.). Journal of Biotechnology 91:117-126. https://doi.org/10.1002/9781119053095.12

Hageman RV, Burris RH (1978). Dinitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. Proceeding of the National Academy of Science of the USA 75:2699-2702.

Hammad SAR, Ali OAM (2014). Physiological and biochemical studies on drought tolerance of wheat plants by application amino acids and yeast extract. Annals of Agricultural Sciences 59:133-145. https://doi.org/10.1016/j.aoas.2014.06.018

Hara S, Morlkawa T, Wasal S, Kasahara Y, Koshiba T, Yamazaki K, … Minamisawa K (2019). Identification of nitrogen-fixing Bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses. Frontiers in Microbiology 10:407. https://doi.org/10.3389/fmicb.2019.00407

Hartmann LS, Barnum SR (2010). Inferring the evolutionary history of Mo-dependent nitrogen fixation from phylogenetic studies of nifK and nifDK. Journal of Molecular Evolution 71:7-85. https://doi.org/10.1007/s00239-010-9365-8

Hemminga MA, Duarte CM (2000). Seagrass ecology. Cambridge University Press, Cambridge.

Herridge DF, Peoples MB, Boddey RM (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311:1-18. https://doi.org/10.1007/s11104-008-9668-3

Higashi M, Abe T, Burns TP (1992). Carbon-nitrogen balance and termite ecology. Proceedings of the Royal Society B: Biological Sciences 249:303-308. https://doi.org/10.1098/rspb.1992.0119

Horan NJ, Jarman TR, Dawes EAJ (1981). Effect of carbon source and inorganic phosphate concentration on the production of alginic acid by a mutant of Azotobacter vinelandii and on the enzyme involved in its biosynthesis. Journal of General Microbiology 127:185-191.

Hrynkiewicz K, Patz S, Ruppel S (2019). Salicornia europaea L. as an underutilized saline-tolerant plant inhabited by endophytic diazotrophs. Journal of Advanced Research 19:49-56. https://doi.org/10.1016/j.jare.2019.05.002

Hu J, Lin X, Bentivenga SP, Hou X-Y, Ji B (2019). Intraradical and extratadical communities of AM fungi associated with alfalfa respond differently to long-term phosphorus fertilization. Flora 258:151424. https://doi.org/10.31274/farmprogressreports-180814-2517

Hugenholtz P (2002). Exploring prokaryotic diversity in the genomic era. Genome Biology 3(2):1-8. https://doi.org/10.1186/gb-2002-3-2-review0003

Ingraffia R, Amato G, Frenda AS, Giambalvo D (2019). Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PLOS ONE 14(3):e0213672. https://doi.org/10.1371/journal.pone.0213672

Inomura K, Bragg J, Follows MJ (2017). A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. The ISME Journal 11:166-175. https://doi.org/10.1038/ismej.2016.97

James EK, Reis VM, Olivares FL, Baldani JI, Dobereiner J (1994). Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. Journal of Experimental Botany 45:757-766. https://doi.org/10.21203/rs.3.rs-103042/v1

James EK (2000). Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research 65:197-209.

James EK, Gyaneshwar P, Barraquio WL, Mathan N, Ladha JK (2000). Endophytic diazotrophs associated with rice. In: Ladha JK, Reddy PM (Eds). The Quest for Nitrogen Fixation in Rice. International Rice Research Institute, Los Banos, pp 119-140.

James EK (2017). Nitrogen fixation. In: Encyclopedia of Applied Plant Sciences. Edition 2, Chapter 124, Academic Press. https://doi.org/10.1016/B978-0-12-394807-6.00124-6

Jarman TR (1979). Bacterial alginate synthesis. In: Barkeley US (Ed). Microbial Polysaccharides and Polysaccharases. Academic Press, London, United Kingdom, pp 35-50.

Jebara S, Drevon JJ, Jebara M (2010). Modulation of symbiotic efficiency and nodular antioxidant enzyme activites in two Phaseolus vulgaris genotypes under salinity. Acta Physiologiae Plantarum 32:925-932. https://doi.org/10.1007/s11738-010-0480-3

Ji R, Kappler A, Brune A (2000). Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biology and Biochemistry 32:1281-1291. https://doi.org/10.1016/s0038-0717(00)00046-8

Ji R, Brune A (2001). Transformation and mineralization 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes orthoganthus. Biology and Fertility of Soils 33:166-174. https://doi.org/10.1099/ijs.0.64969-0

Jimenez DJ, Montana JS, Martinez MM (2011). Characterization of free nitrogen fixing of the genus Azotobacter in organic vegetable-grown Colombian soils. Brazilian Journal of Microbiology 42:846-858. https://doi.org/10.1590/s1517-83822011000300003

Jnawali AD, Ojha RB, Marahatta S (2015). Role of Azotobacter in soil fertility and sustainability- a review. Advances in Plants & Agriculture Research 2(6):250-253.

Joerger RD, Bishop PE (1988). Bacterial alternative nitrogen fixation systems. Critical Reviews in Microbiology 16:1-14. https://doi.org/10.3109/10408418809104465

Johnson NC (2010). Ressources stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist 185:631-647. https://doi.org/10.1111/j.1469-8137.2009.03110.x

Kafkas S, Ortas I (2009). Various mycorrhizal fungi enhance dry weights, P and Zn uptake of four Pistacia species. Journal of Plant Nutrition 32:146-159. https://doi.org/10.1080/01904160802609005

Kargi F, Ozmihci S (2002). Performance of azotobacter supplemented activated sludge in biological treatment of nitrogen deficient wastewater. Process Biochemistry 38:57-64. https://doi.org/10.1016/s0032-9592(02)00055-9

Ke X, Feng S, Wang J, Lu W, Zhang W, Chen M, Lin M (2019). Effect of inoculation with nitrogen-fixing bacterium Pseudomonasstutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Systematic and Applied Microbiology 42:248-260. https://doi.org/10.1016/j.syapm.2018.10.010

Kennedy IR, Tchan Y (1992). Biological nitrogen fixation in non-leguminous field crops: recent advances. Plant and Soil 141:93-118. https://doi.org/10.3724/sp.j.1011.2010.00089

Kennedy IR, Choudhury ATMA, Kecskes ML (2004). Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biology and Biochemistry 36:1229-1244. https://doi.org/10.1186/1471-2180-10-36

Keshri J, Mishra A, Jha B (2013). Microbial population index and community structure in saline-alakine soil using gene targeted metagenomics. Microbiological Research 168:165-173. https://doi.org/10.1099/mic.0.29171-0

Khudhur AM, Askar KA (2013). Effect of some pesticides on growth, nitrogen fixation and nifgenes in Azotobacter chroococcum and Azotobacter vinelandii isolated from soil. Journal of Toxicology and Environmental Health Sciences 5(9):166-171. https://doi.org/10.5897/jtehs12.029

Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen R, … Bucking H (2011). Reciprocal rewards stabilize cooperation in the Mycorrhizal symbiosis. Science 333:880-882. https://doi.org/10.1126/science.1208473

Kirchhof G, Reis VM, Baldani JI, Eckert B, Dobereiner J, Hartmann A (1997). Occurrence, physiology and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194:45-55. https://doi.org/10.3410/f.13336057.14702194

Kisa M, Duponnois R, Assikbetse K, Ramanankierana H, Thioulouse J, Lepage M (2006). Litter-forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia holosricea A. Cunn. Ex G. Don and Scleroderma dictyosporum isolates. FEMS Microbiology Ecology 56:292-303. https://doi.org/10.1111/j.1574-6941.2006.00089.x

Kizilkaya R (2008). Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum. Ecological Engineering 33:150-156. https://doi.org/10.1016/j.ecoleng.2008.02.011

Kizilkaya R (2009). Nitrogen fixation capacity of Azotobacter spp. strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. Journal of Environmental Biology 30(1):73-82. https://doi.org/10.1007/bf00709658

Kneip C, Lockhart P, Vo B, Maier UG (2007). Nitrogen fixation in eukaryotes- new models for symbiosis. BMC Evolutionary Biology 7:55. https://doi.org/10.1186/1471-2148-7-55

Knot JL, Kim SH, Ettl GJ, Doty SJ (2013). Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytologist. https://doi.org/10.1111/nph.12536

Koch AL (2003). Were Gram-positive rods the first bacteria? Trends in Microbiology11:166-170. https://doi.org/10.1016/s0966-842x(03)00063-5

Koskey G, Mburu SW, Njeru EM, Kimiti JM, Ombori O, Maingi JM (2017). Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of Eastern Kenya. Frontiers in Plant Science 8:443. https://doi.org/10.3389/fpls.2017.00443

Kuhnigk T, Branke J, Krekeler D, Cypionka H, Konig H (1996). A feasible role of sulfate-reducing bacteria in the termite gut. Systematic and Applied Microbiology 19:139-149. https://doi.org/10.1016/s0723-2020(96)80039-7

Kumar P, Joolka NK, Sharma SD (2006). Indigenous arbuscular mycorrhiza in apple orchards of north-western Himalayan region. Haryana Journal of Horticultural Sciences 35:207-210.

Kumar P, Sharma SD (2009). Correlation of AM spore number, percent root colonization and Azotobacter count with plant growth, fruit yield and leaf nutrient content of Royal Delicious apple. Environment and Ecology 27(4B):2107-2111. https://doi.org/10.1016/b978-0-444-63987-5.00021-9

Kumar U, Panneerselvam P, Govindasamy V, Vithalkumar L, Senthilkumar M, Banik A, Annapurna K (2017). Long-term aromatic rice cultivation effect on frequency and diversity of diazotrophs in its rhizosphere. Ecological Engineering 101:227-236. https://doi.org/10.1016/j.ecoleng.2017.02.010

Kumar P, Tilak M, Sivakumar K, Saranya K (2018). Studies on the assessment of major nutrients and microbial population of termite mound soil. International Journal of Forestry and Crop Improvement 9:13-17. https://doi.org/10.15740/has/ijfci/9.1/13-17

Kwak Y, Shin JH (2016). First Azospirillum genome from aquatic environments: whole-genome sequence of Azospirilumthiophilum BV-ST, a novel diazotroph harboring a capacity of sulfur-chemolithotrophy from a sulfide spring. Marine Genomics 25:21-24. https://doi.org/10.1016/j.margen.2015.11.001

La Rue TA (1977). The bacteria. In: Hardy RWF, Silver WS (Eds). A Treaties on Dinitrogen Fixation. Section III, Biology. Wiley-Interscience Pub., London, Sydney, Toronto pp 19-63.

LaRoche J, Breitbarth E (2005). Importance of the diazotrophs as a source of new nitrogen in the ocean. Journal of Sea Research 53:67-91. https://doi.org/10.1007/s11-56-007-9066-3

Lee KS, Park SR, Kim YK (2007). Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology 350:144-175. https://doi.org/10.1016/j.jembe.2007.06.016

Leigh JA (2000). Nitrogen fixation in methanogens: the archaeal perspective. Current Issues in Molecular Biology 2(4):125-131. https://doi.org/10.1016/j.jembe.2007.06.013

Lévai L, Veres S, Bákonyi N, Gajdos É (2008). Can wood ash and biofertilizer play a role in organic agriculture? AgronomskiGlasnic 3:263-271.

Levy Y, Dodd J, Krikun J (1983). Effect of irrigation, water salinity and rootstock on the vertical distribution of vesicular-arbuscular mycorrhiza in citrus roots. New Phytologist 95:397-403.

Levy-Booth DJ, Prescott CE, Grayston SJ (2014). Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry 75:11-25. https://doi.org/10.1016.j.soilbio.2014.03.021

Li M, Li H, Wang K, Shi L, Liu J, Zhang L (2016). Effect of arbuscular mycorrhizae on the growth, photosynthetic characteristics and cadmium uptake of peanut plant under cadmium stress. Envrionmental Chemistry 35:2344-2352.

Lilburn TG, Kim KS, Ostrom KR, Byzek JR, Leadbetter JA, Breznak JA (2001). Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495-2498. https://doi.org/10.1126/science.1060281

Lin Y, Ye G, Liu D, Ledgard S, Luo J, Fan J, … Ding W (2018). Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic ultisol. Soil Biology and Biochemistry123:218-228. https://doi.org/10.1016/j.soilbio.2018.05.018

Liu H-L, Zhou H-N, Xing W-M, Zhao J-F, Li S-X, Huang J-F, Bi R-C (2004). 2.6 A resolution crystal structure of the bacterioferritin from Azotobacter vinelandii. FEBS Letters 573:93-98. https://doi.org/10.1016/j.febslet.2004.07.054

Liu N, Shao C, Sun H, Liu Z, Guan Y, Wu L, … Zhang B (2020) Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime. Geoderma 363:114155. https://doi.org/10.1016/j.geoderma.2019.114155

Long X, Chen C, Xu Z, Oren R, He J-Z (2012). Abundance and community structure of ammonia-oxidizing bacteria and archae in a temperate forest ecosystem under ten-years elevated CO2. Soil Biology and Biochemistry 46:163-171. https://doi.org/10.20944/preprints202008.0300.v2

Luo Y, Wasserfallen A (2001). Gene transfer systems and their applications in Archaea. Systematic and Applied Microbiology 24:15-15. https://doi.org/10.21203/rs.3.rs-175664/v1

Mahato S, Kafle A (2018). Comparative study of Azotobacter with or without other fertilizers on growth and yield of wheat in Western hills of Nepal. Annals of Agarian Science16:250-256. https://doi.org/10.1016/j.aasci.2018.04.004

Majeed MZ, Miambi E, Robert A, Bernoux M, Brauman A (2012). Xylophagous termites: a potential sink for atmospheric nitrous oxide. European Journal of Soil Biology 53:121-125. https://doi.org/10.1016/j.ejsobi.2012.10.002

Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ (2001). Genome of the extremely radiation-resistant bacterium Deinococcusradiodurans viewed from the perspective of comparative genomics. Microbiol. Molecular Biology Reviews 65:44-79. https://doi.org/10.1128/mmbr.65.1.44-79.2001

Mancinelli RL, McKay CP (1998). Evolution of nitrogen cycling. Origins of Life 18:311-325. https://doi.org/10.1007/bf01808213

Manchanda G, Garg N (2007). Endomycorrhizal and rhizobial symbiosis: How much do they share? Journal of Plant Interactions 2(2):79-88. https://doi.org/10.1080/17429140701558000

Marques ACR, Oliveira LBD, Nicoloso FT, Jacques RJS, Giacomini SJ, Quadros FLFD (2017). Biological nitrogen fixation in C4 grasses of different growth strategies of South America natural grasslands. Applied Soil Ecology 113:54-62. https://doi.org/10.1016/j.apsoil.2017.01.011

Martinez Toledo MV, Moreno J, De laRubia T, Gonzalez-Lopez J (1989). Root exudates of Zea mays and production of auxins, gibberellins and cytokinins by Azotobacter chroococcum. Plant and Soil 110:149-152. https://doi.org/10.1007/bf02143553

Martyniuk S, Martyniuk M (2003). Occurrence of Azotobacter spp. in some polish soils. Polish Journal of environmental Studies 12(3):371-374. https://doi.org/10.1007/978-3-662-06083-4-15

Massa N, Cesaro P, Todeschini V, Capraro J, Scarafoni A, Cantamessa S, … Bona E (2020). Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition. Applied Soil Ecology 148:103507. https://doi.org/10.1016/j.apsoil.2020.103507

Mao Y, Yannarell AC, Mackie R (2011). Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLOS One 6(9):e24750. https://doi.org/10.371/journal.pone.0024750

Martinez-Toledo MV, Gonzalez-Lopez J, de la Rubia T, Ramos-Cormenzana A (1985). Isolation and characterization of Azotobacter chroococcum from the roots of Zea mays. FEMS Microbiology Ecology 31:197-203. https://doi.org/10.1111/j.1574-6968.1985.tb01149.x

Matthews SS, Sparkes DL, Bullard MJ (2001). The response of wheat to inoculation with the diazotroph Azorhizobiumcaulinodans. Aspects of Applied Biology 63:35-42.

Mbarki S, Cerda A, Brestic M, Mahendra R, Abdelly C, Pascual JA (2017). Vineyard compost supplemented with Trichoderma Harzianum T78 improve saline soil quality. Land Degradation and Development 28:1028-1037. https://doi.org/10.1002/ldr.2554

McRose DL, Lee A, Kopf SH, Baars O, Kraepeil AML, Sigman DM, … Zhang X (2019). Effect of iron limitation on the isotopic composition of cellular and released fixed nitrogen in Azotobactervinelandii. Geochimica et Cosmochimica Acta 244:12-23. https://doi.org/10.1016/j.gca.2018.09.23

Mertins JW (1973). Nitrogen fixation in termites. Nature 244(5418):577-580.

Miller RW, Rady RR (1988). Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase. Biochemical Journal 256:429-432. https://doi.org/10.1042/bj2560429

Mittal A, Yadav A, Singh G, Anand RC, Aggarwal NK (2011). Comparative nitrogen fixation by mesophilic (HTS) vis-à-vis thermotolerant mutants (HTR) of Azotobacterchroococcum at high temperature and their effect on cotton biomass. Jundishapur Journal of Microbiology 4(2):105-114.

Miyagawa S, Koyama Y, Kokubo M, Matsushita Y, Adachi Y, Sivilay S, … Oba S (2011). Indigenous utilization of termite mounds and their sustainability in a rice growing village of the Central Plain of Laos. Journal of Ethnobiology and Ethnomedicine 7:24. https://doi.org/10.1186/1746-4269-7-24

Moisander PH, Cheshire LA, Braddy J, Calandrino ES, Hoffman M, … Paerl HW (2012). Facultative diazotrophy increases Cylindrospermopsisraciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbiology Ecology 79:800-811. https://doi.org10.1111/j.1574-6941.2011.01264.x

Momose A, Hiyama T, Nishimura K, Ishizaki N, Ishikawa S, Yamamoto M, … Ohyama T (2013). Characteristics of nitrogen fixation and nitrogen release from diazotrophic endophytes isolated from sugarcane stems. Bull Fac Agric Niigata Univ 66(1):1-9. https://doi.org/10.1023/a:1016529015349

Montanez A, Abreu C, Gill PR, Hardarson G, Sicardi M (2008). Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope-dilution and identification of associated culturable diazotrophs. Biology and Fertility of Soils 45:253-263. https://doi.org/10.1007/s00374-008-0322-2

Mrkovacki N, Milic V (2001). Use of Azotobacter chroococcum as potentially useful in agricultural application. Annals of Microiology 51:145-159. https://doi.org/10.2298/zmspn0201023m

Muangthong A, Youpensuk S, Rerkasem B (2015). Isolation and characterization of endophytic nitrogen fixing bacteria in sugarecane. Tropical Life Sciences Research 26(1):41-51.

Mus F, Crook MB, Garcia K, Costas AG, Geddes BA, Kouri ED, … Peters JW (2016). Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology 82(13):3698-3710. https://doi.org/10.1128/aem.01055-16

Mwangi SN, Karanja NK, Boga H, Kahindi JHP, Muigai A, Odee D, Mwenda GM (2011). Genetic diversity and symbiotic efficiency of legume nodulating bacteria from different land use systems in Taita Taveta, Kenya. Tropical and Subtroical Agroecosystems13:109-118.

Nafady NA, Hassan EA, Abd-Alla MH, Bagy MMK (2018). Effectiveness of eco-friendly arbuscular mycorrhizal fungi biofertilizer and bacterial feather hydrolysate in promoting growth of Vicia faba in sandy soil. Biocatalysisand Agricultural Biotechnology 16:140-147. https://doi.org/10.1016/j.bcab.2018.07.024

Nag NK, Dash B, Gupta SB, Khokher D, Soni R (2018). Evaluation of stress tolerance of Azotobacter isolates. Biologija 64(1):82-93. https://doi.org/10.6001/biologija.v64i1.3662

Nardi JB, Mackie RI, Dawson JO (2002). Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystem? Journal of Insect Physiology 48:751-763. https://doi.org/10.1016/s0022-1910(02)00105-1

Navarro-Gonzalez R, McKay CP, Mvondo DN (2001). A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412:61-64. https://doi.org/10.1038/35083537

Ngugi DK, Brune A (2011). Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environmental Microbiology 14:860-871. https://doi.org/10.1111/j.1462-2920.2011.02648.x

Nomata J, Mizoguchi T, Tamiaki H, Fujita Y (2006). A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis-reconstitution of chlorophyllide a reductase with purified x-protein (bchX) and yz-protein (bchY-bchZ) from Rhodobacter capsulatus. The Journal of Biological Chemistry 281:15021-15028. https://doi.org/10.1074/jbc.m601750200

Odelade KA, Barbalola OO (2019). Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. International Journal of Environmental Research and Public Health 16:3873. https://doi.org/10.3390/ijerph16203873

Offre P, Spang A, Schleper C (2013). Archaea in biogeochemical cycles. Annual Review of Microbiology 67:437-457. https://doi.org/10.1146/annurev-micro-092412-155614

Ohkuma M, Noda S, Usami R, Horikoshi K, Kudo T(1996). Diversity of nitrogen fixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Applied and Environmental Microbiology 62(8):2747-2752. https://doi.org/10.1016/j.tim.2014.07.007

Olson RA, Kurtz LT (1982). Crop nitrogen requirements, utilization and fertilization. In: Stephenson FJ (Ed). Nitrogen in Agricultural Soils. American Society of Agronomy, Madison, WI, pp 567-604.

Orr CH, James A, Leifert C, Cooper JM, Cummings SP (2011). Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soil. Applied and Environmental Microbiology 77:911-919. https://doi.org/10.1128/aem.01250-10

Ortiz-Marquez JCF, Nascimento MD, Curatti L (2014). Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories. Metabolic Engineering 23:154-164. https://doi.org/10.1016/j.ymben.2014.03.022

Papineau D, Mojzsis SJ, Karhu JA, Marty B (2005). Nitrogen isotopic composition of ammoniated phyllosilicates: case studies from Precambrian metamorphosed sedimentary rocks. Chemical Geology 216(1-2):37-58. https://doi.org/10.1016/j.chemgeo.2004.10.009

Patra AK, Abbadie L, Clays-Josserand A, Degrange V, Grayston SJ, Guillaumaud N, … Le Roux X (2006). Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterials communities in grassland soils. Environmental Microbiology 8:1005-1016. https://doi.org/10.1111/j.1462-2920.2006.00992.x

Pereira MES, Schloter-Hai B, Schloter M, Salles J (2013). Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils. PLoS One8:e74500. https://doi.org/10.1371/journal.pone.0074500

Philippot K, Hallin S, Schloter M (2007). Ecology of denitrifying bacteria in agricultural soil. Advances in Agronomy 96:249-305. https://doi.org/10.1371/journal.pone.0074500

Post E, Kleiner D, Oelze J (1983). Whole cell respiration nitrogenase activities in Azotobacter vinelandii growing in oxygen controlled continuous culture. Archives of Microbiology 134:68-72.

Prayitno J, Rolfe B (2010). Characterization of endophytic diazotroph bacteria isolated from rice. HAYATI Journal of Biosciences 17(2):73-78. https://doi.org/10.4308/hjb.17.4.173

Puschel D, Janouskova M, Voriskova A, Gryndlerova H, Vosatka M, Jansa J (2017). Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Frontiers in Plant Science 8:390. https://doi.org/10.1007/s00573-018-00878-8

Rago L, Zecchin S, Villa F, Goglio A, Corsini A, Cavalca L, Schievano A (2019). Bioelectrochemical nitrogen fixation (e-BNF): electro-stimulation of enriched biofilm communities drives autotrophic nitrogen and carbon fixation. Bioelectrochemistry 125:105-115. https://doi.org/10.1016/j.bioelechem.2018.10.002

Rahav E, Giannetto MJ, Bar-Zeev E (2016). Contribution of mono and polysaccharides to heterotrophic N2 fixation at the eastern Mediterranean coastline. Scientific Report 6:27858. https://doi.org/10.1038/srep27858

Raimam MP, Albino U, Cruz MF, Lovato GM, Spago F, Ferracin TP, … Andrade G (2007). Interaction among free-living N-fixing bacteria isolated from Droseravillosa var. villosa and AM fungi (Glomus clarum) in rice (Oryza sativa). Applied Soil Ecology 35:25-34. https://doi.org/10.1016/j.apsoil.2006.05.013

Ratten J-M, LaRoche J, Desai DK, Shelley RU, Landing WM, Boyle E, … Langlois R (2015). Sources of iron and phosphate affect the distribution of diazotrophs in the North Atlantic. Deep-Sea Research II 116:332-341. https://doi.org/10.1016/j.dsr2.2014.11.012

Ravikumar S, Kathiresan K, Ignatiammal STM, Selvam MB, Shanthy S (2004). Nitrogen-fixing azotobacters from mangrove habitat and their utility as marine biofertilizers. Journal of Experimental Marine Biology and Ecology 312:5-17. https://doi.org/10.1016/s0022-0981(04)00566-0

Raymod J, Siefert JL, Staples CR, Blankenship RE (2004). The natural history of nitrogen fixation. Molecular Biology and Evolution 21(3):541-554. https://doi.org/10.1093/molbev/msh047

Reardon CL, Gollany HT, Wuest SB (2014). Diazotroph community structure and abundance in wheat-fallow and wheat-pea crop rotations. Soil Biology and Biochemistry 69:406-412. https://doi.org/10.1016/j.soilbio.2013.10.038

Reed SC, Cleveland CC, Townsend AR (2011). Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annual Review of Ecology, Evolution and Systematics 42:489-512. https://doi.org/10.1146/annurev-ecolsys-102710-145034

Rehder D (2000). Vanadium nitrogenase. Journal of Inorganic Biochemistry. 80:133-136. https://doi.org/10.1016/s0162-0134(00)00049-0

Reis VM, dos Reis FB, Quesada DM, de Oliveira OCA, Alves BJR, Urquiaga S, Boddey RM (2001). Biological nitrogen fixation associated with tropical pasture grasses. Australian Journal of Plant Physiology 28:837-844. https://doi.org/10.1071/pp01079

Reysenbach AL, Ehringer M, Hershberger K (2000). Microbial diversity at 83 oC in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and Korarchaeota coexist. Extremophiles 4:61-67. https://doi.org/10.1007/s007920050008

Ribeiro CW, Alloing G, Mandon K, Frendo P (2015). Redox regulation of differentiation in symbiotic nitrogen fixation. Biochimica et Biophysica Acta 1850:1469-1478. https://doi.org/101016/j.bbagen.2014.11.018

Ritchie ME, Raina R (2016). Effects of herbivores on nitrogen fixation by grass endophytes, legume symbionts and free-living soil surface bacteria in the Serengeti. Pedobiologia 59:233-241. https://doi.org/10.1016/j.pedobi.2016.09.001

Rodriqgues MA, Ladeira LC, Arrobas M (2018). Azotobacter-enriched organic manures to increase nitrogen fixation and crop productivity. European Journal of Agronomy 93:88-94. https://doi.org/10.1016/j.eja.2018.01.002

Romero-Perdomo F, Abril J, Camelo M, Moreno-Galvan A, Pastrana I, Rojas-Tapias D, Bonilla R (2017). Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): effect in reducing N fertilization. Revista Argentina De Microbiologia 49(4):377-383. https://doi.org/10.1016/j.ram.2017.04.006

Rojas-Tapias D, Ortiz-Vera M, Rivera D, Kloepper J, Bonilla R (2013). Evaluation of three methods for preservation of Azotobacter chroococcum and Azotobacter vinelandii. Universitas Scientiarum 18(2):129-139. https://doi.org/10.11144/javeriana.sc18-2.etmp

Roper MM, Ladha JK (1995). Biological N2 fixation by heterotrophic and phototrophic bacteria in association with straw. Plant and Soil 174:211-224. https://doi.org/10.1007/978-94-011-0053-3-10

Rosch C, Mergel A, Bothe H (2002). Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Applied and Environmental Microbiology 68:3818-3829. https://doi.org/10.1128/aem.68.8.3818.2002

Rosenblueth M, Martinez-Romero E (2004). Rhizobiumetli maize populations and their competitiveness for root colonization. Archives of Microbiology 181:337-344. https://doi.org/10.1007/s00203-004-0661-9

Rosenblueth M, Ormeno-Orrillo E, Lopez-Lopez A, Rogel MA, Reyes-Hernandez BJ, Martinez-Romero JC, … Martinez-Romero E (2018). Nitrogen fixation in cereals. Frontiers in Microbiology 9:1794. https://doi.org/10.3389/fmicb.2018.01794

Rueda D, Valencia G, Soria N, Rueda BB, Manjunatha B, Kundapur RR, Selvanayagam M (2016). Effect of Azospirillum spp. and Azotobacter spp. on the growth yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. Journal of Applied Pharmaceutical Science 6(01):048-054. https://doi.org/10.7324/japs.2016.600108

Ruiz-Rueda O, Hallin S, Baneras L (2009). Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiology Ecology 67:308-319. https://doi.org/10.1111/j.1574-6941.2008.00615x

Ruiz-Lozano JM, Porcel R, Azcon C, Aroca R (2012). Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany 63(11):4033-4044. https://doi.org/10.1093/jxb/ers126

Sabra W, Zeng A-P, Lunsdorf H, Deckwer W-D (2000). Effect of oxygen on formation and structure of Azotobacter vinelandii alginate and its role in protecting nitrogenase. Applied and Environmental Microbiology 66(9):4037-4044. https://doi.org/10.1093/jxb/err266

Sadoff HL (1975). Encystment and germination in Azotobacter vineladii. Bacteriology Review 39:516-539.

Saia S, Amato G, Frenda AS, Giambalvo D, Ruisi P (2014). Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress. PLOS One 9(3):e90738. https://doi.org/10.1371/journal.pone.0090738

Salmeron V, Martinez Toledo MV, Gonzalez Lopez J (1990). Nitrogen fixation and production of auxins, gibberellins and cytokinin by Azotobacter chroococcum strain isolated from root of Zea mays in presence of insoluble phosphate. Chemosphere 20:417-422. https://doi.org/10.2134/agronj2012.0070

Santi C, Bogusz D, Franche C (2013). Biological nitrogen fixation in non-legume plants. Annals of Botany 111:743-767. https://doi.org/10.1093/aob/mct048

Sapountzis P, de Verges J, Rousk K, Cilliers M, Vorster BJ, Poulsen M (2016). Potential for nitrogen fixation in the fungus-growing termite symbiosis. Frontiers in Microbiology 7:1993. https://doi.org/10.3389/fmicb.2016.01993

Sariv Z, Ragoviv B (1963). The influence of the maize on the dynamic of Azotobacter in the soil. Soil Plant 13:273-277.

Savenkova L, Gercberga Z, Kizhlo Z, Stegantseva E (1999). Effect of phosphate supply and aeration on poly-β-hydroxybutyrate production in Azotobacterchroococcum. Process Biochemistry 34:109-114. https://doi.org/10.1016/s0032-9592(98)00070-3

Seesitsch A, Hardoim P, Doering J, Wilharter A, Krause A, Woyke T, … Reinhold-Hurek B (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metganeomic analysis. Molecular Plant Microbe Interactions 25:28-36. https://doi.org/10.1094/mpmi-08-11-0204

Sevilla M, Burris RH, Guanpala N, Kennedy C (2001). Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif-mutant strains. Molecular Plant-Microbe Interact 14(3):358-366. https://doi.org/10.1094/mpmi.2001.14.3.358

Sciotti MA, Chanfon A, Hennecke H, Fischer HM (2003). Disparate oxygen responsiveness of two regulatory cascades that control expression of symbiotic genes in Bradyrhizobium japonicum. Journal of Bacteriology 185:5639-5642. https://doi.org/10.1128/jb.185.18.5639-5642.2003

Seefeldt IC, Hoffman BM, Dean DR (2009). Mechanism of Mo-dependent nitrogenase. Annual Review of Biochemistry 78:701-722. https://doi.org/10.1146/annurev.biochem.78.070907.103812

Sellstedt A, Richau KH (2013). Aspects of nitrogen-fixing actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiology Letters 342:179-186. https://doi.org/10.1111/1574-6968.12116

Shahrajabian MH, Soleymani A, Naranjani L (2011). Grain yield and forage characteristics of forage sorghum under different plant densities and nitrogen levels in second cropping after barley in Isfahan, Iran. Research on Crops 12(1):68-78. https://doi.org/10.9734/ijpss/201732460

Shahrajabian MH, Soleymani A (2017). Responses of physiological indices of forage sorghum under different plant populations in various nitrogen fertilizer treatments. International Journal of Plant and Soil Science 15(2):1-8. https://doi.org/10.9734/ijpss/2017/32460

Shahrajabian MH, Khoshkharam M, Sun W, Cheng Q (2019). Exploring responses of berseem clover cultivars in low input cultivation management for agricultural sustainability. World Scientific News 131:197-206.

Sharma SD, Kumar P (2008). Relationship of arbuscular mycorrhizal fungi and Azotobacter with plant growth, fruit yield, soil and leaf nutrient status of mango orchards in north-western Himalayan region of India. Journal of Applied Horticulture 10:172-176. https://doi.org.10.37855/jah.2008.v10i02.34

Sharma SD, Kumar P, Singh SK, Patel VB (2009). Indigenous AM fungi and Azotobacter chroococcum isolates, and their screening from citrus seedlings at different levels of inorganic fertilizers application. Indian Journal of Horticulture 64:183-189.

Sharma SD, Kumar P, Bhardwaj SK, Yadav SK (2011). Screening and selecting novel AM fungi and Azotobacter strain for inoculating apple under soil solarization and chemical disinfestations with mulch practices for sustainable nursery management. Scientia Horticulturae 130(1):164-174. https://doi.org/10.1016/j.scienta.2011.06.032

Sharma SD, Sharma NC, Sharma CL, Kumar P, Chandel A (2012). Glomus-Azotobacter symbiosis in apple under reduced inorganic nutrient fertilization for sustainable and economic orcharding enterprise. Scientia Horticulturae 146:175-181. https://doi.org/10.37855/jah.2001.v03i02.03

Sharma SD, Kumar P, Yadav SK (2014). Glomus-Azotobacter association affects phenology of mango seedlings under reduced soil nutrient supply. Scientia Horticulturae 173:86-91. https://doi.org/10.17221/2011-pse

Suzuki S, He Y, Oyaizu H (2002). Indole-3-acetic acid production in Pseudomonas fluorescence and its association with suppression of creeping bent grass brown patch. Current Microbiology 47(2):138-143. https://doi.org/10.1007/s00284-002-3968-2

Shiozaki T, Chen Y-LL, Lin Y-H, Taniuchi Y, Sheu D-S, Furuya K, Chen H-Y (2014). Seasonal variations of unicellular diaztroph groups A and B, and Trichodesmium in the northern South China Sea and neighboring upstream Kuroshio current. Continental Shelf Research 80:20-31. https://doi.org/10.1016/j.csr.2014.02.015

Shridhar BS (2012). Review: nitrogen fixing Microorganisms. International Journal ofMicrobiological Research 3(1):46-52. https://doi.org/10.1016/j.csr.2021.014359

Singh R, Adholeya A (2004). Interaction between arbuscular mycorrhizal fungi and plant-growth promoting rhizobacteria. Mycorrhiza News 15:16-17.

Sivasakthi S, Saranraj P, Sivasakthivelan P (2017). Biological nitrogen fixation by Azotobacter sp.- A review. Indo-Asian Journal of Multidisciplinary Research 3(5):1274-1284.

Smith SE, Read DJ (1997). Growth and carbon economy of VA mycorrhizal plants. In: Mycorrhizal Symbiosis. Snd et. Academic, London, pp 105-125. https://doi.org/10.1016/b978-012652840-4/50005-x

Smith SE, Jakobsen I, Grnlund M, Smith FA (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156:1050-1057. https://doi.org/10.1104/pp.111.174581

Smith-Moore C, Grundern AM (2018). Bacteria and archaea as the sources of traits for enhanced plant phenotypes. Biotechnology Advances 36:1900-1916. https://doi.org/10.1016/j.biotechadv.2018.07.007

Soleymani A, Shahrajabian MH, Naranjani L (2011a). Changes in qualitative characteristics and yield of three cultivars of Berseem clover intercropped with forage corn in low input farming system. Journal of Food, Agriculture and Environment 9(1):345-347.

Soleymani A, Shahrajabian MH, Naranjani L (2011b). Study the effect of plant densities and nitrogen fertilizers on yield, yield components and grain protein of grain sorghum. Journal of Food, Agriculture and Environment 9(3&4):244-246. https://doi.org/10.47176/jcpp.9.4.22255

Soleymani A, Shahrajabian MH (2012a). Forage yield and quality in intercropping of forage corn with different cultivars of berseem clover in different levels of nitrogen fertilizer. Journal of Food, Agriculture and Environment 10(1):602-604.

Soleymani A, Shahrajabian MH (2012b). Effects of different levels of nitrogen on yield and nitrate content of four spring onion genotypes. International Journal of Agriculture and Crop Sciences 4(4):179-182. https://doi.org/10.5539/ijb.v4n4p75

Soleymani A, Shahrajabian MH, Modaresi M (2012). Influence of irrigation intervals and different levels of nitrogen fertilizer on yield and prussic acid content in second cropping of forage sorghum grown after wheat. Research on Crops 13(2):498-502.

Souillard N, Magot M, Possot O, Sibold L (1988). Nucleotide sequence of regions homologous nifH (nitrogenase fe protein) from the nitrogen-fixing archaebacteria Methanococcusthermolithotrophicus and Methanobacteriumivanovii: evolutionary implications. Journal of Molecular Evolution 27:65-76. https://doi.org/10.1007/bf02099731

Spang A, Caceres EF, Ettema TJG (2017). Genomic exploration of the diversity, ecology and evolution of the archaeal domain of life. Science357. https://doi.org/10.1126/science.aaf3883

Sprent JI, Parsons R (2000). Nitrogen fixation in legume and non-legume trees. Field Crops Research 65:183-196. https://doi.org/10.3410/f.728374424.793558292

Staples CR, Lahiri S, Raymond J, Von Herbulis L, Mukhophadhyay B, Blankenship RE (2007). Exprssion and association of group IV nitrogenase nifD and nifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii. Journal of Bacteriology 189:7392-7398. https://doi.org/10.1128/jb.00876-07

Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, … Ronson CW (2002). Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. Journal of Bacteriology. 184:3086-3095. https://doi.org/10.1128/jb.184.11.3086-3095.2002

Sun W, Shahrajabian MH, Cheng Q (2019). Anise (Pimpinella anisum l.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biology 5(1673688):1-25. https://doi.org/10.1080/233112025.2019.1673688

Suyal DC, Kumar S, Joshi D, Soni R, Goel R (2018). Quantitative proteomics of psychotrophic diazotroph in response to nitrogen deficiency and cold stress. Journal of Proteomics 187:235-242. https://doi.org/10.1016/j.jprot.2018.08.005

Suzuki S, Noble AD, Ruaysoongnern S, Chinabut N (2007). Improvement in water-holding capacity and structural stability of a sandy soil in Northeast Thailand. Arid Land Research and Management 21:37-49. https://doi.org/10.1080/15324908601087430

Sylvia DM, Hartel PG, Furhmann J, Zuberer D (2005). Principles and applications of soil microbiology. 2ndEdn., Prentice Hall Inc., Upper Saddle River, New Jersey.

Tan Z, Hurek T, Reinhold-Hurek B (2003). Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environmental Microbiology 5:1009-1015. https://doi.org/10.1046/j.1462-2920-2003-00491-x

Tang Y, Zhang W, Zhang M, Chen A, Wei W, Sheng R (2017). Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil. Agriculture, Ecosystems and Environment 247:1-8. https://doi.org/10.1016/j.agee.2017.06.009

Tatusov RL, Fedorova ND, Jackson JD, Jacobs JD, Kiryutin B, Koonin EV, … Nikolskaya AN (2003). The COG database: An updated version includes eukaryotes. BMC Bioinformatics 4:41. https://doi.org/10.1186/1471-2105-4-41

Tayasu I, Sugimoto A, Wada E, Abe T (1994). Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81:229-231. https://doi.org/10.3410/f.1015729.198003

Tchan YT, New PB (1984). Genus I Azotobacter. In: Krieg NR, Holt JG (Eds). Bergey,s Manual of Determinative Bacteriology. Vol. 1. Williams & Wilkins, Baltimore, USA, pp 220-229.

Tejera N, Lluch C, Martinez-Toledo MV, Gonzalez-Lopez J (2005). Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant and Soil 270:223-232. https://doi.org/10.1007/s11104-004-1522-7

Terakado-Tonooka J, Owaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S (2008). Expressed nifH genes of endophytic bacteria detected in field-grown sweet potatoes (Ipomoea batatas L.). Microbes and Environments 23:89-93. https://doi.org/10.1264/jsme2.23.89

Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T (2011). Two seasons, study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarecare (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant and Soil 338:435-449. https://doi.org/10.1007/s11104-010-0557-1

Thioub M, Ewusi-Mensah N, Sarkodie-Addo J, Adjei-Gyapong T (2019). Arbuscular mycorrhizal fungi inoculation enhances phosphorus use efficiency and soybean productivity on a Haplic Acrisol. Soil and Tillage Research 192:174-186. https://doi.org/10.1016/j.still.2019.05.001

Timothy CE (1999). The presence of nitrogen fixing legumes in terrestrial communities: Evolutionaty vs ecological considerations. Biogeochemistry 46:233-246. https://doi.org/10.1007/bf01007581

Tokuda G, Watanabe H, Hojo M, Fujita A, Makiya H, Miyagi M, … Arioka M (2012). Cellulolytic environment in the midgut of the wood-feeding higher termite Nasutitermestakasagoensis. Journal of Insect Physiology 58:147-154. https://doi.org/10.1016/j.jinsphys.2011.10.012

Treseder KK, Balser TC, Bradford MA, Brodie EL, Dubinsky EA, Eviner VT, … Waldrop MP (2012). Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 109:7-18. https://doi.org/10.1007/s10533-011-9636-5

Tsoy OV, Ravcheev DA, Cuklina J, Gelfand MS (2016). Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria. Frontiers in Microbiology 7:1343. https://doi.org/10.2172/1427520

Ulyshen MD (2015). Insect-mediated nitrogen dynamics in decomposing wood. Ecological Entomology 40(1):97-112. https://doi.org/10.1603/ice.2016.91295

Velmourougane K, Prasanna R, Supriya P, Ramakrishnan B, Thapa S, Saxena AK (2019). Transcriptome profiling provides insights into regulatory factors involved in Trichoderma viride-Azotobacter chroococcum biofilm formation. Microbiological Research 227:126292. https://doi.org/10.1134/s0003683817050179

Verzeaux J, Hirel B, Dubois F, Lea PJ, Tetu T (2017). Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: basic and agronomic aspects. Plant Science 264:48-56. https://doi.org/10.1016/j.plantsci.2017.08.004

Veselaj E, Sallaku G, Balliu A (2018). Tripartite relationships in legume crops are plant-microorganism-specific and strongly influenced by salinity. Agriculture 8:117. https://doi.org/10.3390/agriculture8080117

Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013). Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B368. https://doi.org/10.1098/rstb.2013.0119

Volpin H, Kapunik Y (1994). Interaction of Azospirillum with beneficial soil microorganisms. In: Okon Y (Ed). Azopirillum/ Plant Association (Florida United State: CRC Press. Inc.).

Wang Q, Garrity GM, Tiedje JM, Cole JR (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261-5267. https://doi.org/10.1128/aem.00062.07

Wang Y, Li H, Li J, Li X (2017). The diversity and co-occurrence patterns of diazotrophs in the steppes of Inner Mongolia. Catena 157:130-138. https://doi.org.10.1016/j.catena.2017.05.006

Wani SA, Chand S, Ali T (2013). Potential use of Azotobacter chroococcumin crop production: an overview. Current Agricultural Research 1:35-38. https://doi.org/10.12944/carj.1.1.04

Watson J (1977). The use of mounds of the termite Macroter mesfalciger (gerstacker) as a soil amendment. European Journal of Soil Science 28:664-672. https://doi.org/10.1111/j.1365-2389.1977.tb02273.x

Welsh DT (2000). Nitrogen fixation in seagrass meadows Regulation, plant-bacteria interactions and significance to primary productivity. Ecology Letters 3:58-71. https://doi.org/10.111/j.1365-2389.1976.tb02019.x

Woese CR, Fox GE (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the US 74:5088-5090. https://doi.org/10.1073/pnas.74.11.5088

Xiao T-J, Yang Q-S, Ran W, Xu G-H, Shen Q-R (2010). Effect of inoculation with arbuscular mycorrhizal fungus on nitrogen and phosphorus utilization in upland rice-mungbean intercropping system. Agricultural Sciences in China 9(4):528-535. https://doi.org/10.1016/s1671-2927(09)60126-7

Xiao Z, Rasmann S, Yue L, Lian F, Zou H, Wang Z (2019). The effect of biochar amendment on N-cycling genes in soils: A meta-analysis. Science of the Total Environment 696:133984. https://doi.org/10.1016/j.scitotenv.2019.133984

Xiao D, Tan Y, Liu X, Yang R, Zhang W, He X, … Wang K (2020). Responses of soil diazotrophs to legume species and density in a karst grassland, southwest China. Agriculture, Ecosystems and Environment 288:106707. https://doi.org/10.1016/j.agee.2019.106707

Xie X-G, Zhang F-M, Yang T, Chen Y, Li X-G, Dai C-C (2019). Endophytic fungus drives nodulation and N2 fixation attributable to specific root exudates. MBio 10:e00728-19. https://doi.org/10.1128/mbio.00728-19

Xu H, Shao H, Lu Y (2019). Arbuscular mycorrhiza fungi and related soil microbial activity drive carbon mineralization in the maize rhizosphere. Ecotoxicology and Environmental Safety 182:109476. https://doi.org/10.1016/j.ecoenv.2019.109476

Yang L, Bai J, Zeng N, Zhou X, Liao Y, Lu Y, … Cao W (2019). Diazotroph abundance and community structure are reshaped by straw return and mineral fertilizer in rice-rice-green manure rotation. Applied Soil Ecology 136:11-20. https://doi.org/10.1016/j.apsoil.2018.12.015

Yin Y, Gu J, Wang X, Zhang K, Hu T, Ma J, Wang Q (2018). Impact of copper on the diazotroph abundance and community composition during swine manure composting. Bioresource Technology 255:257-265. https://doi.org/10.1016/j.biortech.2018.01.120

You J, Das A, Dolan EM, Hu Z (2009). Ammonia-oxidizing archaea involved in nitrogen removal. Water Research 43:1801-1809. https://doi.org/10.1016/j.watres.2009.01.016

Yu SS, Ullrich M (2018). Interaction of nitrogen fixation and alginate synthesis of Azotobacter vinelandii isolated from Myanmar mangrove. International Journal of Plant Biology and Research 6(2):1088.

Zehr JP, Jenkins BD, Short SM, Steward GF (2003). Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environmental Microbiology 5:539-554. https://doi.org/10.1046/j.1462-2920-2003-00451.x

Zhang X, Han C, Gao H, Cao Y (2019). Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanisms for growth with arbuscular mycorrhizal fungi under salinity stress. Plant Physiology and Biochemistry 141:20-29. https://doi.org/10.1016/j.plaphy.2019.05.013

Zhang W, Yu C, Wang X, Hai L, Hu J (2020). Increased abundance of nitrogen fixing by higher C/N ration reduces the total losses of N and C in cattle manure and corn stover mix composting. Waste Management 103:416-425. https://doi.org/10.1016/j.wasman.2020.04.034

Zhang W, Yu C, Wang X, Hai L (2020). Increased abundance of nitrogen transforming bacteria by higher C/N ration reduces the total losses of N and C in chicken manure and corn stover mix composting. Bioresource Technology 297:122410. https://doi.org/10.1016/j.biortech.2019.122410

Zhao L, Liu Y, Yuan S, Li Z, Sun J, Li X (2020). Development of archael communities in biological soil crusts along a revegetation chronosequences in the Tengger Desert, north central China. Soil and Tillage Research 196:204443. https://doi.org/10.1016/j.still.2019.104443

Published
2021-05-05
How to Cite
SUN, W., SHAHRAJABIAN, M. H., & CHENG, Q. (2021). Archaea, bacteria and termite, nitrogen fixation and sustainable plants production. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(2), 12172. https://doi.org/10.15835/nbha49212172
Section
Review Articles
CITATION
DOI: 10.15835/nbha49212172