Fermentable carbohydrate metabolism in maguey mezcalero potosino (Agave salmiana): HPLC characterization and evaluation

  • Christian MICHEL-CUELLO Autonomous University of San Luis Potosí, Middle Zone Multidisciplinary Academic Unit, Rioverde-San Ciro Highway, Km 4 Ejido Puente del Carmen, 79617, Rioverde, San Luis Potosí (MX)
  • Noé AGUILAR-RIVERA University of Veracruz, Faculty of Biological and Agricultural Sciences, Orizaba Córdoba región, Camino Peñuela-Amatlán s/n Peñuela, Amatlán de los Reyes, 94952, Veracruz (MX)
  • Cristian LÓPEZ-PALACIOS Autonomous University of San Luis Potosí, Middle Zone Multidisciplinary Academic Unit, Rioverde-San Ciro Highway, Km 4 Ejido Puente del Carmen, 79617, Rioverde, San Luis Potosí (MX)
  • Juan F. CÁRDENAS-GONZÁLEZ Autonomous University of San Luis Potosí, Middle Zone Multidisciplinary Academic Unit, Rioverde-San Ciro Highway, Km 4 Ejido Puente del Carmen, 79617, Rioverde, San Luis Potosí (MX)
Keywords: Agave; carbohydrate metabolism; San Luis Potosi; sugar identification and quantification

Abstract

The maguey mezcalero potosino (Agave salmiana) is a natural resource of great regional importance, used for the manufacture of mezcal and other alcoholic beverages by fermentation of simple sugars and sugars released by fructans hydrolysis. For this, only the stem and base of leaves is used, which results on wasting the other sections that represent up to 40% of weight of the complete plant. The objective of this study was to identify and quantify the fermentable carbohydrates present in raw and hydrolysed juices of the stem and four sections of the whole leaves (base, neck, wings and apex) of maguey plants with representative specimens of three stages of maturity with industrial importance. For carbohydrate characterization, high resolution liquid chromatography (HLPC) was used. The sugars found as fructose, glucose, sucrose, xylose and maltose coincide with those identified in other Agave species, significant differences are observed depending on the section and the state of maturity of the plant, the sugar concentration in the discarded sections of the plant (fructose: 5.79 – 4.80 mg mL-1) are considerable and statistically similar to those found in the stem (fructose: 2.49 mg mL-1) and the base of the leaf (fructose: 3.16 mg mL-1) (structure used in the mezcal production process). The results obtained can promote the integral use of the plant and diversification towards other industries such as pharmaceuticals, biofuels or foods.

Metrics

Metrics Loading ...

References

Acosta DL, Alamilla BL, Calderón DG, Jiménez AAR, Gutiérrez LGF, Azuara NE (2018). Determination of total and incipient solubilization point of fructans extracted of A. tequilana weber var. azul. Revista Mexicana de Ingeniería Química 17:379-388. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Acosta

Aguirre RJR, Charcas H, Flores JL (2001). El maguey mezcalero potosino [The maguey mezcalero potosino]. Autonomous University of San Luis Potosí and Potosino Council of Science and Technology: San Luis Potosí.

Chávez RA, Farías CVS, Luna SG, Chávez RAM, Ortíz BRI, Andrade GI (2016). Quality attributes and particles deposition of spray dried fructans of blue Agave juice. Revista Mexicana de Ingeniería Química 15:493-502. http://rmiq.org/ojs311/index.php/rmiq/article/view/1159

Chinnici F, Spinabelli U, Amati A (2002). Simultaneous determination of organic acids, sugars, and alcohols in must a wine by an improved ion-exclusion HPLC method. Journal of Liquid Chromatography & Related Technologies 25(16):2551-2560. https://doi.org/10.1081/JLC-120014274

Davies C, Robinson SP (1996). Sugar accumulation in grape berries (cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues). Plant Physiology 111:175-273. https://doi.org/10.1104/pp.111.1.275

De los Rios DGC, Rutiaga QOM (2015). Improving Agave duranguensis must for enhanced fermentation. C/N ratio effects on mezcal composition and sensory properties. Revista Mexicana de Ingeniería Química 14:363-371. http://rmiq.org/ojs311/index.php/rmiq/article/view/1225

Echeverria E (1990). Developmental transition from enzymatic to acid hydrolysis of sucrose in acid limes (Citrus aurantifolia). Plant Physiology 92:168-171. https://doi.org/10.1104/pp.92.1.168

Esparza IEL, Violante GJ, Monks S, Cadena IJ, Araujo AC, Rössel KE (2015). Los agaves mezcaleros del altiplano Potosino y Zacatecano. In: Pulido FG, Monks S, López HM (Eds). Estudios en Biodiversidad Vol I, [The mezcal agaves of the Potosino and Zacatecano highlands. In Pulido FG, Monks S, López HM (Eds). Biodiversity Studies Vol I] Zea Book. Lincoln, NE. https://www.researchgate.net/publication/286463988_Los_agaves_mezcaleros_del_altiplano_Potosino_y_Zacatecano

García GR, Gradilla HMS, Ortiz BRI, García RRA, González AM (2020). Assessment of intermediate- and long- chains Agave fructan fermentation on the growth of intestinal bacteria cultured in a gastrointestinal tract simulator. Revista Mexicana de Ingeniería Química 19:827-838. https://doi.org/10.24275/rmiq/Bio842

García ME, Romero MA, Nobel PS (2010). Highlights for Agave productivity. GCB Bioenergy 3:1. https://doi.org/10.1111/j.1757-1707.2010.01078.x

Goldschmidt EE, Huber SC (1992). Regulation of photosynthesis by end – product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiology 99:1443-1448. https://doi.org/10.1104/pp.99.4.1443

Goldstein G, Ortega JK, Nerd A, Nobel PS (1991). Diel patterns of water potential components for the crassulacean acid metabolism plant Opuntia ficus-indica when well-watered on droughted. Plant Physiology 95:274-280. https://doi.org/10.1104/pp.95.1.274

Gómez GAV, Valdez VI, Caballero CM, Chiñas CF, Alavéz RR, Montes BJL (2019). Co-digestion of Agave angustifolia haw bagasse and vinasses for biogasproduction from mezcal industry. Revista Mexicana de Ingeniería Química 18:1073-1083. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Gomez

Harner NK, Wen X, Bajwa PK, Austin GD, Ho CY, Habash MB, … Lee H (2015). Genetic improvement of native xylose‑fermenting yeasts for ethanol production. Journal of Industrial Microbiology and Biotechnology 42:1-20. https://doi.org/10.1007/s10295-014-1535-z

Hayashi T, Koyama T, Matsuda K (1998). Formation of UDP-xylose and xyloglucan in soybean Golgi membranes. Plant Physiology 87:341-345. https://doi.org/10.1104/pp.87.2.341

Hofer K, Jenewein D (1999). Enzymatic determination of inulin in food and dietary supplements. European Food Research and Technology 209:423-427. https://doi.org/10.1007/s002170050520

Jaramillo L, Pazutti LB, de Aguiar PF, Ferreira LVS, Sérvulo EC (2020). Determination of metabolites involved in fermentative succinic acid production from glucose, glycerol and crude glycerin by HPLC methodology. Revista Mexicana de Ingeniería Química 19:653-667. https://doi.org/10.24275/rmiq/Bio747

Lara HC, Grajales LA, Ruiz CMA, Ventura CC, Gutiérrez MFA, Ruiz VVN, Abud AM (2017). Agave americana honey fermentation by Kluyveromyces marxianus strain for “comiteco” production, a spirit from Mexican southeast. Revista Mexicana de Ingeniería Química 16:771-779. http://rmiq.org/ojs311/index.php/rmiq/article/view/932

Lee HS, Coates GA (2000). Quantitative study of free sugars and myo-inositol in citrus juices by HPLC and a literature compilation. Journal of Liquid Chromatography & Related Technologies 23(14):2123-2141. https://doi.org/10.1081/JLC-100100476

López MG, Mancilla MNA (2002). Generation of maillard compounds from inulin during the thermal processing of Agave tequilana Weber var. azul. Journal of Agricultural and Food Chemistry 50:806-812. https://doi.org/10.1021/jf0110295

López MG, Mancilla MNA, Mendoza DG (2003). Molecular structures of fructans from Agave tequilana Weber var. azul. Journal of Agricultural and Food Chemistry 51:7835-7840. https://doi.org/10.1021/jf030383v

Lu Y, Gehan JP, Sharkey TD (2005). Daylength and cicardian effects on starch degradation and maltose metabolism. Plant Physiology 138:2280-2291. https://doi.org/10.1104/pp.105.061903

Mancilla MNA, López MG (2006). Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. Journal of Agricultural and Food Chemistry 54:7832-7839. https://doi.org/10.1021/jf060354v

Mellado ME, López MG (2015). Identification, classification, and discrimination of Agave syrups from natural sweeteners by infrared spectroscopy and HPAEC-PAD. Food Chemistry 167:349-357. http://dx.doi.org/10.1016/j.foodchem.2014.06.111

Michel-Cuello C (2004). Mejoramiento de la eficiencia en la molienda en el proceso de elaboración de mezcal potosino [Improvement of milling efficiency in the potosino mezcal production process]. Bachelor's thesis. Autonomous University of San Luis Potosí.

Michel-Cuello C, Juárez FBI, Aguirre RJR, Pinos RJM (2008). Quantitative characterization of nonstructural carbohydrates of mezcal Agave (Agave salmiana Otto ex Salm-Dick). Journal of Agricultural and Food Chemistry 56:5753-5757. https://doi.org/10.1021/jf800158p

Michel-Cuello C, Ortíz CI, Moreno VL, Grajales LA, Moscosa SM, Bonnin J, … Ruiz CMA (2012). Study of enzymatic hydrolysis of fructans from Agave salmiana characterization and kinetic assessment. The Scientific World Journal. https://doi.org/10.1100/2012/863432

Michel-Cuello C, Gallegos FG, Maldonado CE, Aguilar-Rivera N (2015). Effect of temperature and pH environment on the hydrolysis of maguey fructans to obtain fructose syrup. Revista Mexicana de Ingeniería Química 14:615-622. http://www.rmiq.org/iqfvp/Pdfs/Vol.%2014,%20No.%203/Alim5/RMIQTemplate.pdf

Montañez SJL, Venegas GJ, Ceja TL, Castellanos PN, Yañez FJ (2014). Fractional extraction of the fructans contained in the Agave tequilana weber blue head based on their average degree of polymerization. Advances in Bioresearch. 5:107-113. http://www.soeagra.com/abr/abrsept_2014/19.pdf

Mora MI, Marioli JM (2001). Honey carbohydrate analysis by HPLC, with electrochemical detection, using a Ni-Cr alloy electrode. Journal of Liquid Chromatography & Related Technologies 24(5):711-720. https://doi.org/10.1081/JLC-100103405

Moreno VL, Garcia HMH, Delgado PRE, Corral FNE, Cortez EN, Ruiz CMA, Portales PDP (2014). In vitro assessment of Agave fructans (Agave salmiana) as prebiotics and immune system activators. International Journal of Biological Macromolecules 63:181-187. https://doi.org/10.1016/j.ijbiomac.2013.10.039.

Moreno VL, Bostyn S, Flores MJL, Camacho RR (2017). Size-exclusion chromatography (HPLC-SEC) technique optimization by simplex method to estimate molecular weight distribution of Agave fructans. Food Chemistry 237:833-540. https://doi.org/10.1016/j.foodchem.2017.06.020

Ortiz MOH, Morales MTK, Ríos GLJ (2017). Bioethanol production from Agave lechuguilla biomass pretreated by autohydrolysis. Revista Mexicana de Ingeniería Química 16:467-476. http://rmiq.org/iqfvp/Pdfs/Vol.%2016,%20No.%202/Alim7/RMIQTemplate.pdf

Ritsema T, Smeekens S (2003). Engineering fructan metabolism in plants. Plant Physiology 160:811-820. https://doi.org/10.1078/0176-1617-01029

Romero LMR, Osorio DP, Flores MA, Robledo N, Mora ER (2015). Chemical composition, antioxidant capacity and prebiotic effect of aguamiel (Agave atrovirens) during in vitro fermentation. Revista Mexicana de Ingeniería Química. 14:281-292. http://rmiq.org/ojs311/index.php/rmiq/article/view/1202

Saucedo LJ, Castro MAJ, Rico JL, Campos GJ (2010). Optimization of acid hydrolysis of bagasse from Agave tequilana Weber. Revista Mexicana de Ingeniería Química 9:91-97. http://www.redalyc.org/articulo.oa?id=62016243011

Solís GA, Rivas GP, Escamilla AC, Rico MR, Bravo SMG, Botello AJE (2017). Methanol production kinetics during Agave cooking for mezcal industry. Revista Mexicana de Ingeniería Química 16:827-834. http://rmiq.org/ojs311/index.php/rmiq/article/view/944

Srinivasan M, Bathia IS (1953). The carbohydrates of Agave vera cruz Mill. Biochemical Journal 55:286-289. https://doi.org/10.1042/bj0550286

Wang N, Nobel P (1998). Phloem transport of fructans in the crassulacean acid metabolism species Agave deserti. Plant Physiology 116:709-714. https://doi.org/10.1104/pp.116.2.709

Weise SE, Kim KS, Stewart RP, Sharkey TD (2005). β- maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiology 137:756-761. https://doi.org/10.1104/pp.104.055996

Zhang H, Nobel PS (1996). Photosynthesis and carbohydrate partitioning for the C3 desert shrub Encelia farinosa under current and doubled CO2 concentrations. Plant Physiology 110:1361-1366. https://doi.org/10.1104/pp.110.4.1361

Zúñiga EL, Rosales RE, Yáñez MML, Jaques HC (2018). Características y productividad de una planta MAC, Agave tequilana desarrollada con fertigación en Tamaulipas, México [Characteristics and productivity of a MAC plant, Agave tequilana developed with fertigation in Tamaulipas, Mexico]. Revista Mexicana de Ciencias Agrícolas 9:553-564. https://doi.org/10.29312/remexca.v9i3.1214

Published
2021-02-08
How to Cite
MICHEL-CUELLO, C., AGUILAR-RIVERA, N., LÓPEZ-PALACIOS, C., & CÁRDENAS-GONZÁLEZ, J. F. (2021). Fermentable carbohydrate metabolism in maguey mezcalero potosino (Agave salmiana): HPLC characterization and evaluation . Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12154. https://doi.org/10.15835/nbha49112154
Section
Research Articles
CITATION
DOI: 10.15835/nbha49112154