Effects of five mycorrhizal fungi on biomass and leaf physiological activities of walnut


  • Wei-Jin CHENG Wuhan Forestry Workstation, Wuhan, 430023 (CN)
  • Yong-Jie XU Hubei Academy of Forestry, Wuhan, Hubei 430075 (CN)
  • Guang-Ming HUANG Yangtze University, College of Horticulture and Gardening, Jingzhou, Hubei 434025 (CN)
  • Mohammed M. RAHMAN Tokyo Gakugei University, Natural Science Unit, Koganei, Tokyo 184-8501 (JP)
  • Zhi-Yan XIAO Wuhan Forestry Workstation, Wuhan, 430023 (CN)
  • Qiang-Sheng WU Yangtze University, College of Horticulture and Gardening, Jingzhou, Hubei 434025 (CN) http://orcid.org/0000-0002-3405-8409




arbuscular mycorrhiza; mineral nutrition; photosynthate; walnut


Arbuscular mycorrhizal fungi (AMF) can benefit many plants, but their effects on walnuts are not yet known. The present study aimed to analyze the effect of five AMF species, namely, Acaulospora scrobiculata, Diversispora spurca, Glomus etunicatum, G. mosseae and G. versiforme on biomass production, chlorophyll contents, sugar fraction contents, and mineral element contents of walnut (Juglans regia L.) seedlings. The five AMF species colonized roots of walnut, established mycorrhizas in roots and hyphae in soil, and released easily extractable glomalin-related soil protein into soil, whilst D. spurca exhibited the best effect. All the AMF inoculations, except A. scrobiculata, stimulated shoot and root biomass production. Mycorrhizal fungal inoculations collectively increased leaf chlorophyll a, chlorophyll b, and total chlorophyll a+b concentrations, and thus promoted leaf sucrose accumulation, which provides an important mycorrhiza-carbon source to roots. AMF inoculations conferred a positive effect on leaf N, P, K, Mg, Fe, B, Zn and Cu contents, while they reduced leaf Mn contents. These results concluded that AMF were beneficial to the growth and physiological activities of walnut, which gives the support for the AMF application in walnut.


Adolfsson L, Nziengui H, Abreu IN, Šimura J, Beebo A, Herdean A (2017). Enhanced secondary and hormone metabolism in leaves of arbuscular mycorrhizal Medicago truncatula. Plant Physiology 175:392-411. https://doi.org/10.1104/pp.16.01509

Amijee F, Tinker PB, Stribley DP (1989). Effects of phosphorus on the morphology of VA mycorrhizal root system of leek (Allium porrum L.). Plant and Soil 119:334-336. https://doi.org/10.1007/BF02370427

Arines J, Vilarino A, Sainz M (1990). Effect of vesicular-arbuscular mycorrhizal fungi on Mn uptake by red clover. Agriculture, Ecosystems and Environment 29:1-4. https://doi.org/10.1007/s005720050302

Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology 24:1-15. https://doi.org/10.1104/pp.24.1.1

Bago B, Pfeffer P, Shachar-Hill Y (2001). Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis?. New Phytologist 149:4-8. https://doi.org/10.1046/j.1469-8137.2001.00016.x

Baslam M, Esteban R, García-Plazaola JI, Goicoechea N (2013). Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Applied Microbiology and Biotechnology 97:3119-3128. https://doi.org/10.1007/s00253-012-4526-x

Behrooz A, Vahdati K, Rejali F, Lotfi M, Leslie C (2019). Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience 54:1087-1092. https://doi.org/10.21273/HORTSCI13961-19

Bethlenfalvay GJ, Ames RN (1987). Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi1. Soil Science Society of America Journal 51:834-837.

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248-252.

Bu WS, Chen FS, Wang FC, Fang XM, Wang HM (2019). The species-specific responses of nutrient resorption and carbohydrate accumulation in leaves and roots to nitrogen addition in a subtropical mixed plantation. Canadian Journal of Forest Research 49:1-27.

Curaqueo G, Acevedo E, Cornejo P, Seguel A, Rubio R, Borie F (2010). Tillage effect on soil organic matter, mycorrhizal hyphae and aggregates in a mediterranean agroecosystem. Journal of Soil Science and Plant Nutrition 10:12-21. https://doi.org/10.4067/S0718-27912010000100002

Davoodian N, Bosworth J, Rajakaruna N (2012). Mycorrhizal colonization of Hypericum perforatum L. (Hypericaceae) from serpentine and granite outcrops on the Deer Isles, Maine. Northeastern naturalist 19:517-526.

Diop TA, Krasova-Wade T, Diallo A, Diouf M, Gueye M (2003). Solanum cultivar responses to arbuscular mycorrhizal fungi: growth and mineral status. African Journal of Biotechnology 2:429-433.

Dixon RK (1988). Seed source and vesicular-arbuscular mycorrhizal symbiont affects growth of Juglans nigra seedlings. New Forests 2:203-211. https://doi.org/10.1007/BF00029989

Dolcet-Sanjuan R, Claveria E, Camprubí A, Estaún V, Calvet C (1996). Micropropagation of walnut trees (Juglans regia L.) and response to arbuscular mycorrhizal inoculation. Agronomie 16:639-645.

Duan J, Tian H, Drijber RA, Gao Y (2015). Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat (Triticum aestivum L.) Plant Physiology and Biochemistry 96:199-208. https://doi.org/10.1016/j.plaphy.2015.08.006

Ekanayake IJ, Oyetunji OJ, Osonubi O, Lyasse O (2015). The effects of arbuscular mycorrhizal fungi and water stress on leaf chlorophyll production of cassava (Manihot esculenta Crantz). Journal of Food Agriculture and Environment 2:190-196.

Fester T, Wray V, Nimtz M, Strack D (2005). Is stimulation of carotenoid biosynthesis in arbuscular mycorrhizal roots a general phenomenon?. Phytochemistry 66:1781-1786. https://doi.org/10.1016/j.phytochem.2005.05.009

Frey B, Hannes S (1993). Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytologist 124:221-230.

García-González I, Quemada M, Gabriel JL, Hontoria C (2016). Arbuscular mycorrhizal fungal activity responses to winter cover crops in a sunflower and maize cropping system. Applied Soil Ecology 102:10-18. https://doi.org/10.1016/j.apsoil.2016.02.006

García-Rodríguez S, Azcón-Aguilar C, Ferrol N (2010). Transcriptional regulation of host enzymes involved in the cleavage of sucrose during arbuscular mycorrhizal symbiosis. Physiologia Plantarum 129:737-746. https://doi.org/10.1111/j.1399-3054.2007.00873.x

Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Sharma KK, … Tuteja N (2016). Piriformospora indica: potential and significance in plant stress tolerance. Frontiers in Microbiology 7:332. https://doi.org/10.3389/fmicb.2016.00332

Giri B, Kapoor R, Mukerji KG (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils 38:170-175. https://doi.org/10.1007%2Fs00374-003-0636-z

Govindarajulu M, Pfeffer P, Jin H, Abubaker J, Douds D, Allen J (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819-823. https://doi.org/10.1038/nature03610

He JD, Chi GG, Zou YN, Shu B, Wu QS, Srivastava AK, Kuča K (2020). Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Applied Soil Ecology 154:103592. https://doi.org/10.1016/j.apsoil.2020.103592

He JD, Dong T, Wu HH, Zou YN, Wu QS, Kuca K (2019). Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae 243:64-69. https://doi.org/10.1016/j.scienta.2018.08.010

Hodge A, Helgason T, Fitter AH (2010). Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology 3:267-273. https://doi.org/10.1016/j.funeco.2010.02.002

Ingraffia R, Amato G, Frenda AS, Giambalvo D, Aroca R (2019). Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PLoS One 14:e0213672. https://doi.org/10.1371/journal.pone.0213672

Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005). The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist 168:687-696. https://doi.org/10.1111/j.1469-8137.2005.01536.x

Johansen A, Olsson FPA (2006). Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist 133:705-712.

Kilpeläinen J, Aphalo PJ, Barbero-López A, Bartosz A, Alam NS, Tarja L (2020). Are arbuscular-mycorrhizal Alnus incana seedlings more resistant to drought than ectomycorrhizal and nonmycorrhizal ones?. Tree Physiology 40:782-795. https://doi.org/10.1093/treephys/tpaa035

Kong X, Zhao Y, Tian K, He X, Tian X (2020). Insight into nitrogen and phosphorus enrichment on cadmium phytoextraction of hydroponically grown Salix matsudana Koidz cuttings. Environmental ence and Pollution Research 27:1-12. https://doi.org/10.1007/s11356-019-07499-4

Labidi S, Jeddi FB, Tisserant B, Yousfi M, Sanaa M, Dalpé Y (2015). Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil. Mycorrhiza 25:297-309. https://doi.org/10.1007/s00572-014-0609-0

Latef AAHA and Chaoxing H (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae 127:228-233.

Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000). Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331-336. https://doi.org/10.1007/s005720050277

López-Ráez JA, Verhage A, Fenández I, García JM, Azcón-Aguilar C, Flors V, Pozo MJ (2010). Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany 61:2589-2601. https://doi.org/10.1093/jxb/erq089

Mathur S, Sharma MP, Jajoo A (2018). Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. Journal of Photochemistry and Photobiology B: Biology 180:149-154. https://doi.org/10.1016/j.jphotobiol.2018.02.002

Meng LL, He JD, Zou YN, Wu QS, Kuča K (2020). Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange. Plant, Soil and Environment 66:183-189. https://doi.org/10.17221/100/2020-PSE

Moreira H, Pereira SIA, Vega A, Castro PML, Marques APGC (2019). Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. Journal of Environmental Management 257:109982. https://doi.org/10.1016/j.jenvman.2019.109982

Nagy R, Drissner D, Amrhein N, Bucher JM (2010). Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytologist 181:950-959. https://doi.org/10.1111/j.1469-8137.2008.02721.x

Ortas I, Ortakçi D, Kaya Z, Çinar A, Önelge N (2002). Mycorrhizal dependency of sour orange in relation to phosphorus and zinc nutrition. Journal of Plant Nutrition 25:1263-1279. https://doi.org/10.1081/PLN-120004387

Pati R, Mukhopadhyay D (2009). Effects of organics influencing the arsenic transport in soil-plant systems. Indian Journal of Agricultural Sciences 79:996-999.

Perumalsamy P, Thangavelu M (2017). Arbuscular mycorrhizal fungus influence maize root growth and architecture in rock phosphate amended tropical soil. Anales de Biología 39:211-222. https://doi.org/10.6018/analesbio.39.22

Pfeffer PE, Douds DD, Heike B, Schwartz DP, Shachar-Hill Y (2010). The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytologist 163:617-627.

Phillips JM, Hayman DS (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:158-161. https://doi.org/10.1016/S0007-1536(70)80110-3

Qin L, Zhang CL, Zhang B (2011) Differential gene expression in leaves and roots of winter rape in response to phosphorus starvation. Russian Journal of Plant Physiology 58:142-148. https://doi.org/10.1134/S1021443710061032

Seguel A, Barea JM, Cornejo P, Borie F (2015). Role of arbuscular mycorrhizal symbiosis in phosphorus-uptake efficiency and aluminium tolerance in barley growing in acid soils. Crop and Pasture science 66:696-705. https://doi.org/10.1071/CP14305

Shao YD, Zhang DJ, Hu XC, Wu QS, Jiang CJ, Xia TJ, Gao XB, Kuča K (2018). Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants. Plant, Soil and Environment 64:283-289. https://doi.org/10.17221/126/2018-PSE

Sun H, Yang F (2019). Effect of arbuscular mycorrhizal fungi on switchgrass growth and mineral nutrition in cadmium-contaminated soil. Polish Journal of Environmental Studies 29:1369-1377. https://doi.org/10.1371/journal.pone.0196408

Tran BTT, Cavagnaro TR, Watts-Williams SJ (2019). Arbuscular mycorrhizal fungal inoculation and soil zinc fertilisation affect the productivity and the bioavailability of zinc and iron in durum wheat. Mycorrhiza 29:445-457.

Treseder Kathleen K (2013). The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant and Soil 371:1-13. https://doi.org/10.1007/s11104-013-1681-5

Tuo XQ, Li S, Wu QS, Zou YN (2015). Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: Changes in chlorophyll and proline metabolism. Scientia Horticulturae 197:130-134.

Veresoglou SD, Shaw LJ, Sen R (2011). Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant and Soil 340:481-490. https://doi.org/10.1007/s11104-010-0619-4

Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE (2015). Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytologist 205:1632-1645. https://doi.org/10.1111/nph.13292

Wang H, He Z, Zhang Z, Yang C (2016). Xylem ion balance in tomato plants under alkali stress. Australian Journal of Crop Science 10:874-877.

Weisany W, Raei Y, Salmasi SZ, Sohrabi Y, Ghassemi-Golezani K (2016). Arbuscular mycorrhizal fungi induced changes in rhizosphere, essential oil and mineral nutrients uptake in dill/common bean intercropping system. Annals of Applied Biology 169:384-397. https://doi.org/10.1111/aab.12309

Wu HH, Zou YN, Rahman MM, Ni QD, Wu QS (2017). Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Scientific Reports 7:42389. https://doi.org/10.1038/srep42389

Wu QS, Gao WQ, Srivastava AK, Zhang F, Zou YN (2020). Nutrient acquisition and fruit quality of Ponkan mandarin in response to AMF inoculation. Indian Journal of Agricultural Sciences 90:1563-1567.

Wu QS, He JD, Srivastava AK, Zhang F, Zou YN (2019a). Development of propagation technique of indigenous AMF and their inoculation response in citrus. Indian Journal of Agricultural Sciences 89:1190-1194.

Wu QS, He JD, Srivastava AK, Zou YN, Kuca K (2019b). Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology 39:1149-1158. https://doi.org/10.1093/treephys/tpz039

Wu QS, He XH, Zou YN, He KP, Sun YH, Cao MQ (2012). Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β-glucosidase in the rhizosphere of Citrus unshiu. Soil Biology and Biochemistry 45:181-183. https://doi.org/10.1016/j.soilbio.2011.10.002

Wu QS, Srivastava AK, Zou YN (2013). AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae 164:77-87 https://doi.org/10.1016/j.scienta.2013.09.010

Wu QS, Lou YG, Li Y (2015). Plant growth and tissue sucrose metabolism in the system of trifoliate orange and arbuscular mycorrhizal fungi. Scientia Horticulturae 181:189-193. https://doi.org/10.1016/j.scienta.2014.11.006

Xie MM, Zou YN, Wu QS, Zhang ZZ, Kuča K (2020). Single or dual inoculation of arbuscular mycorrhizal fungi and rhizobia regulates plant growth and nitrogen acquisition in white clover. Plant, Soil and Environment 66:287-294. https://doi.org/10.17221/234/2020-PSE

Yang L, Zou YN, Tian ZH, Wu QS, Kuča K (2021). Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Scientia Horticulturae 277:109815. https://doi.org/10.1016/j.scienta.2020.109815

Zhang F, Zou YN, Wu QS, Kuča K (2020). Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environmental and Experimental Botany 171:103962. https://doi.org/10.1016/j.envexpbot.2019.103926

Zou J, Shang X, Li C, Ouyang J, Li B, Liu X (2019). Effects of cadmium on mineral metabolism and antioxidant enzyme activities in Salix matsudana Koidz. Polish Journal of Environmental Studies 28:989-999.

Zou YN, Wu QS, Kuča K (2020). Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biology. https://doi.org/10.1111/plb.13161




How to Cite

CHENG, W.-J., XU, Y.-J., HUANG, G.-M., RAHMAN, M. M., XIAO, Z.-Y., & WU, Q.-S. (2020). Effects of five mycorrhizal fungi on biomass and leaf physiological activities of walnut. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2021–2031. https://doi.org/10.15835/nbha48412144



Research Articles
DOI: 10.15835/nbha48412144

Most read articles by the same author(s)

1 2 3 > >>