Effect of modified atmosphere packaging on nutraceutical quality and overall appearance of figs stored at 1 °C
DOI:
https://doi.org/10.15835/nbha48412076Keywords:
‘Black Mission’; ethylene production; Ficus carica L.; postharvest handling; respiration rate; sensory testAbstract
Ficus carica L. has fruits with an exquisite flavour, colour and aroma. However, due to its morphological characteristics, it has a limited shelf life. The objective of this research was to evaluate the effect of modified atmosphere packaging on nutraceutical quality and the overall appearance of figs stored at 1 °C. The experimental design used was completely randomized with four replications. The combined use of packaging and cold allowed to observe fruits with less weight loss and firmness, maintaining the values of citric acid and VC without significant changes. With the exception of the last evaluation period, no statistical variation was found in the content of TAn, TP and AC. On the other hand, it was also possible to observe a significant impact on the reduction of respiration and ethylene production, which could be corroborated with the conservation of sensory aspects of the fruit (texture, colour, appearance, marketing level, aroma and flavour) from very good to good. The generation of passive atmospheres (packaging) and the use of cold (1 °C) are useful tools in maintaining the nutraceutical quality and appearance of fig fruits, aspects highly appreciated by consumers and marketers of this fruit.
References
Allegra A, Colelli G (2017). The effect of passive atmosphere on quality of ‘Dottato’ breba fig stored at low temperature. Acta Horticulturae 1173:315-318. https://doi.org/10.17660/ActaHortic.2017.1173.54
AOAC (1990). Association of Official Analytical Chemists. Official Methods and Analysis (14th ed). Arlington.
Bahar A, Lichter A (2018). Effect of controlled atmosphere on the storage potential of Ottomanit fig fruit. Scientia Horticulturae 227:196-201. https://doi.org/10.1016/j.scienta.2017.09.036
Baldoni D, Ventura-Aguilar R., Hernández-López M, Corona M, Barrera-Necha L, Correa-Pacheco Z, Bautista-Baños S (2016). Calidad postcosecha de higos ‘Black Mission’ tratados con cubiertas naturales [Postharvest quality of ficus ‘Black Mission’ treated with natural coatings]. Revista Iberoamericana de Tecnología Postcosecha 17(2):267-275. https://www.redalyc.org/articulo.oa?id=81349041014
Barolo MI, Ruiz MN, López SN (2014). Ficus carica L. (Moraceae): An ancient source of food and health. Food Chemistry 164:119-27. https://doi.org/10.1016/j.foodchem.2014.04.112
Bautista-Baños S, Ventura-Aguilar RI, Correa-Pacheco Z, Corona-Rangel ML (2017). Chitosan: a versatile antimicrobial polysaccharide for fruit and vegetables in postharvest - a review. Revista Chapingo Serie Horticultura 23(2):103-121. https://doi.org/10.5154/r.rchsh.2016.11.030
Bouzo CA, Travadelo M, Gariglio NF (2012). Effect of different packaging materials on postharvest quality of fresh fig fruit. International Journal of Agriculture & Biology 14:821-825. https://www.fspublishers.org/Issue.php?y=2012&v_no=14&categoryID=99
Çalişkan O, Aytekin PA (2011). Phytochemical and antioxidant properties of selected fig (Ficus carica L.) accessions from the eastern Mediterranean region of Turkey. Scientia Horticulturae 128(4):473-478. https://doi.org/10.1016/j.scienta.2011.02.023
Cantín M, Palou L, Bremer V, Michailides TJ, Crisosto CJ (2011). Evaluation of the use of sulfur dioxide to reduce postharvest losses on dark and green figs. Postharvest Biology and Technology 59(2):150-158. https://doi.org/10.1016/j.postharvbio.2010.09.016
Conover WJ (1980). Practical nonparametric Statistics. John Wiley & Sons (2nd ed), New York.
Craker LE (1971). Postharvest color promotion in cranberry with ethylene. HortScience 6:137-139.
Crisosto CH, Bremer V, Ferguson L, Crisosto GM (2010). Evaluating quality attributes of four fresh fig (Ficus carica L.) cultivars harvested at two maturity stages. HortScience 45(4):707-710. https://doi.org/10.21273/HORTSCI.45.4.707
Ersoy N, Gozlekci S, Gok V, Yilmaz S (2017). Fig (Ficus carica L.) fruit: some physical and chemical properties. Acta Horticulturae 1173:329-334. https://doi.org/10.17660/ActaHortic.2017.1173.57
Estrada-Beltrán A, Salas-Salazar NA, Parra-Quezada RA, González-Franco AC, Soto-Caballero MC, Rodríguez-Roque MJ, … Chávez-Martinez A (2020). Effect of conventional and organic fertilizers on volatile compounds of raspberry fruit. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2): 862-870. https://doi.org/10.15835/nbha48211810
Fadda A, Amedeo P, Azara E, D'Aquino S (2020). Effect of modified atmosphere packaging on overall appearance and nutraceutical quality of pot marigold held at 5 °C. Food Research International 134:109248. https://doi.org/10.1016/j.foodres.2020.109248
FAOSTAT (2018). Food and Agriculture Organization of the United Nations. Retrieved 2020 June 18 from http://www.fao.org/faostat/es/#data/QC
Fogliano V, Verde V, Randazzo G, Ritieni A (1999). Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. Journal of Agricultural and Food Chemistry 47:1035-1040. https://doi.org/10.1021/jf980496s
Frías-Moreno MN, Olivas-Orozco GI, González-Aguilar GA, Benitez-Enriquez YE, Paredes-Alonso A, Jacobo-Cuellar JL, … Parra-Quezada RA (2019). Yield, quality and phytochemicals of organic and conventional raspberry cultivated in Chihuahua. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(2):522-530. https://doi.org/10.15835/nbha47211385
García-Ruiz MT, Mendoza-Castillo VM, Valadez-Moctezuma E, Muratalla-Lúa A (2013). Initial assessment of natural diversity in Mexican fig landraces. Genetics and Molecular Research 12(3):3931-3943. https://doi.org/10.4238/2013.September.23.12
Harzallah A, Mnari BA, Amri Z, Soltana H, Hammami M (2016). Phytochemical content and antioxidant activity of different fruit parts juices of three figs (Ficus carica L.) varieties grown in Tunisia. Industrial Crops and Products 83:255-267. https://doi.org/10.1016/j.indcrop.2015.12.043
Irfan PK, Vanjakshic V, Keshava-Prakasha MN, Ravie R, Kudachikar VB (2013). Calcium chloride extends the keeping quality of fig fruit (Ficus carica L.) during storage and shelf-life. Postharvest Biology and Technology 82:70-75. https://doi.org/10.1016/j.postharvbio.2013.02.008
Jagota S, Dani H (1982). A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Analytical Biochemistry 127(1):178-182. https://doi.org/10.1016/0003-2697(82)90162-2
Kamiloglu S, Capanoglu E (2013). Investigating the in vitro bioaccessibility of polyphenols in fresh and sun-dried figs (Ficus carica L.). International Journal of Food Science and Technology 48(12):2621-2629. https://doi.org/10.1111/ijfs.12258
Karabulut OA, Ilhan K, Arslan U, Vardar C (2009). Evaluation of the use of chlorine dioxide by fogging for decreasing postharvest decay of fig. Postharvest Biology and Technology 52(3):313-315. https://doi.org/10.1016/j.postharvbio.2009.01.006
King ES, Hopfer H, Haug MT, Orsi JD, Heymann H, Crisosto GM, Crisosto CH (2012). Describing the appearance and flavor profiles of fresh fig (Ficus carica L.) cultivars. Journal of Food Science 77(12):S419-S429. https://doi.org/10.1111/j.1750-3841.2012.02994.x
Mendoza-Castillo VM, Pineda-Pineda J, Vargas-Canales J, Hernández-Arguello E (2019). Nutrition of fig (Ficus carica L.) under hydroponics and greenhouse conditions. Journal of Plant Nutrition 42(11-12):1350-1365. https://doi.org/10.1080/01904167.2019.1609510
Mendoza-Castillo VM, Vargas-Canales JM, Calderón-Zavala G, Mendoza-Castillo MC, Santacruz-Varela A (2017). Intensive production systems of fig (Ficus carica L.) under greenhouse conditions. Experimental Agriculture 53(3): 339-350. https://doi.org/10.1017/S0014479716000405
Moreno-Pérez EC, Sánchez-del Castillo F, Gutiérrez-Tlaque J, González-Molina L, Pineda-Pineda J (2015). Greenhouse lettuce production with and without nutrient solution recycling. Revista Chapingo Serie Horticultura 21(1):43-55. https://doi.org/10.5154/r.rchsh.2013.12.047
Neves LC, Rodrigues AC, Vieites RL (2002). Polietileno de baixa densidade (pebd) na conservação póscolheita de figos CV. “Roxo de Valinhos” [Low density polyetilene (ldpe), in the postharvest conservation of fig cv. “Roxo de Valinhos” stored under cold storage]. Revista Brasileira de Fruticultura 24(1):57-62.
https://www.scielo.br/scielo.php?script=sci_issuetoc&pid=0100-294520020001&lng=pt&nrm=iso
NúñezCastellano K, Castellano G, Ramírez-Méndez R, Sindoni M, Marin RC (2012). Efecto del cloruro de calcio y una cubierta plástica sobre la conservación de las propiedades organolépticas de la fresa (Fragaria × Ananassa Duch) [Effect of calcium chloride and a plastic cover on the conservation of properties organoleptic strawberry (Fragaria × ananassa Duch)]. Revista Iberoamericana de Tecnología Postcosecha 13(1):21-30.
Okatan K (2020). Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: A comparative study. Folia Horticulturae 32(1):79-85. https://doi.org/10.2478/fhort-2020-0008
Quintero-Hilario CC, Esparza-Torres F, García-Mateos MR, Ybarra-Moncada MC, Hernández-Ramos L (2019). Effect of roasting on the nutritional value and antioxidant components of Maya nut (Brosimum alicastrum: Moraceae). Revista Chapingo Serie Horticultura 25(3):199-212. https://doi.org/10.5154/r.rchsh.2019.03.007
Salas-Salazar NA, Molina-Corral FJ, Dávila-Aviña JE, Parra-Quezada RA, Robles-Hernández L, Olivas-Orozco GI (2017). Influencia del almacenamiento en la síntesis de compuestos volátiles de manzana “Red Delicious” [Influence of storage on the synthesis of volatile apple compounds “Red Delicious”]. Revista Mexicana de Ciencias Agrícolas 8(1):223-231. https://doi.org/10.29312/remexca.v8i1.86
SIAP (2019). Agricultural and Livestock Information System [In Spanish]. Retrieved 2020 June 4 from https://nube.siap.gob.mx/cierreagricola/
Slatnar A, Klancar U, Stampar F, Veberic R (2011). Effect of drying of figs (Ficus carica L.) on the contents of sugar, organic acids, and phenolic compounds. Journal of Agricultural and Food Chemistry 59:11696-11702. https://doi.org/10.1021/jf202707y
Sozzi GO, Abrajan-Villaseñor MA, Trinchero GD, Fraschina AA (2005). Postharvest response of ‘Brown Turkey’ figs (Ficus carica L.) to the inhibition of ethylene perception. Journal of the Science of Food and Agriculture 85(14):2503-2508. https://doi.org/10.1002/jsfa.2296
Steiner A (1984). The universal nutrient solution. ISOSC, Netherlands.
Valle-Guadarrama S, Alonso-Campos A, Alia-Tejacal I (2008). Atmósferas con bajo O2 y alto CO2 para la conservación de frutos de litchi [Low O2 and high CO2 atmospheres for preservation of litchi fruits]. Revista Fitotecnia Mexicana 31(2):157-164. https://www.revistafitotecniamexicana.org/31-2.html
Villalobos MC, Ansah F, Amodio ML, Serradillas MJ, Colelli G (2017). Application of modified atmosphere packaging with moisture absorber to extend the shelf life of ‘Domenico Tauro’ breba fruit. Acta Horticulturae 1173:365-370. https://doi.org/10.17660/ActaHortic.2017.1173.63
Villalobos MC, Martin A, Ruiz-Moyano S, Martín E, Córdoba MG, Serradillas MJ (2015a). Effect of modified atmosphere packaging on the antioxidant activity and total phenolic content in ‘Albacor’ figs. Acta Horticulturae 1079:573-579. https://doi.org/10.17660/ActaHortic.2015.1079.77
Villalobos MC, Serradilla MJ, Martin A, Ruiz-Moyano S, Pereira C, Córdoba MG (2018a). Use of equilibrium modified atmosphere packaging for preservation of ‘San Antonio’ and ‘Banane’ breba crops (Ficus carica L.). Postharvest Biology and Technology 98:14-22. https://doi.org/10.1016/j.postharvbio.2014.07.001
Villalobos MC, Serradillas MJ, Martin A, Aranda E, López-Corrales E, Córdoba MG (2018b). Influence of modified atmosphere packaging (MAP) on aroma quality of figs (Ficus carica L.). Postharvest Biology and Technology 136:145-151. https://doi.org/10.1016/j.postharvbio.2017.11.001
Villalobos MC, Serradillas MJ, Martin A, Aranda E, López-Corrales E, Pereira C, Córdoba MG (2015b). Preservation of different fig cultivars (Ficus carica L.) under modified atmosphere packaging during cold storage. Journal of the Science of Food and Agriculture 96(6):2103-2115. https://doi.org/10.1002/jsfa.7326
Waterman PG, Mole S (1994). Methods in ecology. Analysis of phenolic plant metabolites. Blackwell Scientific Publications, Oxford.
Wojdyło A, Nowicka P, Carbonell-Barrachina AA, Hernández F (2016). Phenolic compounds, antioxidant and antidiabetic activity of different cultivars of Ficus carica L. fruits. Journal of Functional Foods 25:421-432. https://doi.org/10.1016/j.jff.2016.06.015
Zhang W, Li X, Zheng J, Wang G, Sun C, Ferguson I, Chen K (2008). Bioactive components and antioxidant capacity of Chinese bayberry (Myrica rubra Sieb. and Zucc.) fruit in relation to fruit maturity and postharvest storage. European Food Research and Technology 227:1091-1097. https://doi.org/10.1007/s00217-008-0824-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 María T. MARTÍNEZ-DAMIÁN, Omegar CRUZ-ARVIZU, Oscar CRUZ-ALVAREZ

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.