A friendly-environmental strategy: application of arbuscular mycorrhizal fungi to ornamental plants for plant growth and garden landscape

Authors

  • Miao-Miao XIE Yangtze University, College of Horticulture and Gardening, Jingzhou, Hubei 434025 (CN)
  • Yu WANG Yangtze University, College of Horticulture and Gardening, Jingzhou, Hubei 434025 (CN)
  • Qiu-Shuang LI Yangtze University, College of Horticulture and Gardening, Jingzhou, Hubei 434025 (CN)
  • Kamil KUČA University of Hradec Kralove, Faculty of Science, Department of Chemistry, Hradec Kralove 50003 (CZ)
  • Qiang-Sheng WU Yangtze University, College of Horticulture and Gardening, Jingzhou, Hubei 434025;University of Hradec Kralove, Faculty of Science, Department of Chemistry, Hradec Kralove 50003 (CN) http://orcid.org/0000-0002-3405-8409

DOI:

https://doi.org/10.15835/nbha48312055

Keywords:

endophytic fungi; ecological reconstruction; garden plants; stress; symbiosis

Abstract

The demand for ornamental plants is increasing due to urban greening and rural construction, while the growing environment of plants, especially the soil environment, is deteriorating. Hence, sustainable methods of ornamental plant cultivation need to be developed quickly. The application of arbuscular mycorrhizal fungi (AMF) to ornamental plants can be one of the eco-friendly ways to achieve the objective. Soil AMF establish mycorrhizal symbiosis with roots of ornamental plants, which can develop a marvelous mycorrhizal mycelium network in the rhizosphere to stimulate nutrient and water acquisition of host plants. Numerous researches have proven that AMF improved the quality of ornamental plants, like fruit yield, height, biomass, seed quality, the size and number of flowers, leaf, and root. In addition, mycorrhizal fungi also improve nutrient uptake and endogenous hormone balance of host plants. Another important function of AMF is to regulate the physiological, biochemical, and molecular responses of host plants to adversity, including drought stress, temperature stress, heavy-metal stress, and insect and disease stress. From the perspective of the ecological garden landscape, AMF richness would maintain plant abundance, nutrient and energy balance, and higher productivity in normal and soil environment stress, thus, establishing a friendly-environmental ecosystem. This review also provides the basis to exploit and improve the commercial application of AMF in ornamental plants in the future.

References

Aerts R, Ewald M, Nicolas M, Piat J, Skowronek S, Lenoir J, … Schmidtlein S (2017). Invasion by the alien tree Prunus serotina alters ecosystem functions in a temperate deciduous forest. Frontiers in Plant Science 8:179-187. https://doi.org/10.3389/fpls.2017.00179

Aroca R, Vernieri P, Ruiz-Lozano JM (2008). Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. Journal of Experimental Biology 59:2029-2041. https://doi.org/10.1093/jxb/ern057

Asikainen E, Mutikainen P (2005). Preferences of pollinators and herbivores in gynodioecious Geranium sylvaticum. Annals of Botany 95:879-86. https://doi.org/10.1093/aob/mci094

Bainard LD, Klironomos JN, Gordon AM (2011). The mycorrhizal status and colonization of 26 tree species growing in urban and rural environments. Mycorrhiza 21(2):91-96. https://doi.org/10.1007/s00572-010-0314-6

Banla EM, Banito A, Sogbedji JM (2015). Effects of arbuscular mycorrhizal fungi on the production of tomato in Togo. International Journal of Biological and Chemical Sciences 9(3):1270-1276. https://doi.org/10.4314/ijbcs.v9i3.12

Barber NA, Gorden NL (2015). How do belowground organisms influence plant–pollinator interactions?. Journal of Plant Ecology 8(1):1-11. https://doi.org/10.1093/jpe/rtu012

Barea JM, Azconaguilar C (1982). Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Applied and Environmental Microbiology 43(4):810-813. https://doi.org/10.1128/aem.43.4.810-813.1982

Barros V, Frosi G, Santos M, Ramos DG, Falcao HM, Santos M (2018). Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species. Plant Physiology and Biochemistry 3:469-477. https://doi.org/10.1016/j.plaphy.2018.04.016

Bedini S, Turrini A, Rigo C, Argese E, Giovannetti (2010). Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice. Soil Biology and Biochemistry 42(5):758-765. https://doi.org/10.1016/j.soilbio.2010.01.010

Bi Y, Zhang J, Song Z, Wang ZG, Qiu L, Hu JJ, Gong YL (2019). Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures. Science of the Total Environment 652:398-405. https://doi.org/10.1016/j.scitotenv.2018.10.249

Bunn RA, Lekberg Y, Zabinski CA (2009). Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 90(5):1378-1388. https://doi.org/10.1890/07-2080.1

Carvalho MD, Brito I, Alho L, Goss MJ (2015). Assessing the progress of colonization by arbuscular mycorrhiza of four plant species under different temperature regimes. Journal of Plant Nutrition and Soil Science 178(3):515-522. https://doi.org/10.1002/jpln.201400303

Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, ... He C (2013). Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Scientia Horticulturae 160:222-229. https://doi.org/10.1016/j.scienta.2013.05.039

Cheng HQ, Ding YE, Shu B, Zou YN, Wu QS, Kuča K (2020a). Plant aquaporin responses to mycorrhizal symbiosis under abiotic stress. International Journal of Agriculture and Biology 23:786-794. https://doi.org/10.17957/IJAB/15.1353

Cheng S, Tian L, Zou YN, Wu QS, Kuca K, Bora P (2020b). Molecular responses of arbuscular mycorrhizal fungi in tolerating root rot of trifoliate orange. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(2):558-571. https://doi.org/10.15835/nbha48211916

Chern EC, Tsai DW, Ogunseitan OA (2007). Deposition of glomalin-related soil protein and sequestered toxic metals into watersheds. Environment Science and Technology 41(1):3566-3572. https://doi.org/10.1021/es0628598

Dag A, Yermiyahu U, Ben-Gal A, Zipori I, Kapulnik Y (2009). Nursery and post-transplant field response of olive trees to arbuscular mycorrhizal fungi in an arid region. Crop and Pasture Science 60(5):427-433. https://doi.org/10.1071/CP08143

Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, … Jairus T (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970-973. https://doi.org/10.1126/science.aab1161

Duhamel M, Vandenkoornhuyse P (2013). Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication. Trends in Plant Science 18:597-600. https://doi.org/10.1016/j.tplants.2013.08.010

Egidi E, Franks AE (2018). Incorporating fungal community ecology into invasion biology: challenges and opportunities. Microbiology Australia 8:56-60. https://doi.org/10.1071/MA18015

Elsen A, Baimey H, Sweenen R, De Waele D (2003). Relative mycorrhizal dependency and mycorrhiza-nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibility. Plant and Soil 256:303-313. https://doi.org/10.1023/A:1026150917522

Engel R, Szabo K, Abranko L, Rendes K, Fuzy A, Takacs T (2016). Effect of arbuscular mycorrhizal fungi on the growth and polyphenol profile of marjoram, lemon balm, and marigold. Journal of Agricultural and Food Chemistry 64:3733-3742. https://doi.org/10.1021/acs.jafc.6b00408

Fall F, Diouf DEG, Fall D, Ndoye I, Ndiaye C, Kane A, Ba AM (2015). Effect of arbuscular mycorrhizal fungal inoculation on growth, and nutrient uptake of the two grass species, Leptochloa fusca (L.) Stapf and Sporobolus robustus Kunth, under greenhouse conditions. African Journal of Biotechnology 14:2770-2776.

Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, … Bucking H (2014). Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist 203:645-656. https://doi.org/10.1111/nph.12827

Gamage H K, Singhakumara B M, Ashton MS (2004). Effects of light and fertilization on arbuscular mycorrhizal colonization and growth of tropical rain-forest Syzygium tree seedlings. Journal of Tropical Ecology 20:525-534. https://doi.org/10.1017/S0266467404001592

Garmendia I, Mangas VJ (2012). Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions. Spanish Journal of Agricultural Research 1:166-174.

Gaur A, Adholeya A (2005). Diverse response of five ornamental plant species to mixed indigenous and single isolate arbuscular-mycorrhizal inocula in marginal soil amended with organic matter. Journal of Plant Nutrition 28:707-723. https://doi.org/10.1081/PLN-200052647

Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001). The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytologist 151:717-724. https://doi.org/10.1046/j.0028-646x.2001.00216.x

Gonzalez-Chavez MC, Carrillo-Gonzalez R, Gutierrez-Castorena MC (2009). Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi. Journal of Hazardous Materials 161:1288-1298. https://doi.org/10.1016/j.jhazmat.2008.04.110

González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005). Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biology 42:130-140. https://doi.org/10.1016/j.fgb.2004.10.007

González-Guerrero M, Benabdellah K, Valderas A, Azcón-Aguilar C, Ferrol N (2010). GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza 20:137-146. https://doi.org/10.1007/s00572-009-0273-y

Hayashi M, Niwa R, Urashima Y, Suga Y, Sato S, Hirakawa H, … Karasawa T (2018). Inoculum effect of arbuscular mycorrhizal fungi on soybeans grown in long-term bare-fallowed field with low phosphate availability. Soil Science and Plant Nutrition 64:306-311. https://doi.org/10.1080/00380768.2018.1473007

He JD, Dong T, Wu HH, Zou YN, Wu QS, Kuča K (2019). Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae 243:64-69. https://doi.org/10.1016/j.scienta.2018.08.010

He JD, Chi GG, Zou YN, Shu B, Wu QS, Srivastava AK, Kuča K (2020). Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Applied Soil Ecology 154:103592. https://doi.org/10.1016/j.apsoil.2020.103592

Hishi T, Tateno R, Fukushima K, Fujimarki R, Itoh M, Tokuchi N, Näsholm T (2016). Changes in the anatomy, morphology and mycorrhizal infection of fine root systems of Cryptomeria japonica in relation to stand ageing. Tree Physiology 37:61-70. https://doi.org/10.1093/treephys/tpw076

Huang GM, Zou YN, Wu QS, Xu YJ, Kuča K (2020). Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant, Soil and Environment 66:295-302. https://doi.org/10.17221/240/2020-PSE

Ismail Y, Hijri M (2012). Arbuscular mycorrhisation with Glomus irregulare induces expression of potato PR homologues genes in response to infection by Fusarium sambucinum. Functional Plant Biology 39:236-245. https://doi.org/10.1071/fp11218

Jaiti F, Meddich A, El Hadrami I (2007). Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease. Physiological and Molecular Plant Pathology 71(4):166-173. https://doi.org/10.1016/j.pmpp.2008.01.002

Janoušková M, Pavlíková D (2010). Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium. Plant and Soil 332:511-520. https;//doi.org/10.1007/s11104-010-0317-2

Jin Z, Li J, Li Y (2015). Interactive effects of arbuscular mycorrhizal fungi and copper stress on flowering phenology and reproduction of Elsholtzia splendens. Plos One 10(12):e0145793. https://doi.org/10.1371/journal.pone.0145793

Joner E, Leyval C (2001). Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biology and Fertility of Soils 33:351-357. https://doi.org/10.1007%2Fs003740000331

Khalvait MA, Hu Y, Mozafar A, Schmidhalter U (2005). Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology 7:706-712. https://doi.org/10.1055/s-2005-872893

Kiers ET, Adler LS, Grman EL, Heijden MD (2010). Manipulating the jasmonate response: how do methyl jasmonate additions mediate characteristics of aboveground and belowground mutualisms? Functional Ecology 24:434-443. https://doi.org/10.1111/j.1365-2435.2009.01625.x

Klironomos J, Zobel M, Tibbett M, Stock WD, Rillig MC, Parrent JL (2011). Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytologist 189:366-370. https://doi.org/10.1111/j.1469-8137.2010.03550.x

Kumar A, Bhatti SK, Aggarwal A (2012). Biodiversity of endophytic mycorrhiza in some ornamental flowering plants of Solan, Himachal Pradesh. Biological Forum 4:45-51.

Kushwaha A, Rani R, Kumar S, Gautam A (2016). Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environment Review 24:39-51. https://doi.org/10.1139/er-2015-0010

Lacombe S, Bradley R.L, Hamel C, Beaulieu C (2009). Do tree-based intercropping systems increase the diversity and stability of soil microbial communities? Agriculture Ecosystem and Environment 131:25-31. https://doi.org/10.1016/j.agee.2008.08.010

Lee EH, Eo JK, Ka KH, Eom A (2013). Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41(3):121-125. https://doi.org/10.5941/MYCO.2013.41.3.121

Leigh J, Hodge A, Fitter AH (2009). Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist 181:199-207. https://doi.org/10.1111/j.1469-8137.2008.02630.x

Li J, Meng B, Chai H, Yang XC, Song WZ, Li SX, … Zhang T (2019). Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science 10:499. https://doi.org/10.3389/fpls.2019.00499

Li S, Yang W, Guo J, Li X, Lin J, Zhu X (2020). Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi. Plant Physiology and Biochemistry 154:1-10. https://doi.org/10.1016/j.plaphy.2020.05.025

Li T, Hu Y, Hao Z, Li H· Wang YS. Chen BD (2013). First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist 197:617-630. https://doi.org/10.1111/nph.12011

Lin G, McCormack ML, Guo D (2015). Arbuscular mycorrhizal fungal effects on plant competition and community structure. Journal of Ecology 103:1224-1232. https://doi.org/10.1111/1365-2745.12429

Liu J, Maldonadomendoza IE, Lopezmeyer M, Cheung F, Town C, Harrison MJ (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant Journal 50:529-544. https://doi.org/10.1111/j.1365-313X.2007.03069.x

Liu SJ, Guo HL, Xu J, Song ZY, Song SR, Tang JJ, Chen X (2018). Arbuscular mycorrhizal fungi differ in affecting the flowering of a host plant under two soil phosphorus conditions. Journal of Plant Ecology 11:623-631.

Majewska ML, Rola K, Zubek S (2017). The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 27:83-94. https://doi.org/10.1007/s00572-016-0729-9

Marschner H, Dell B (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159:89-102. https://doi.org/10.1007/BF00000098

Mathur S, Jajoo A (2020). Arbuscular mycorrhizal fungi protect maize plants from high temperature stress by regulating photosystem II heterogeneity. Industrial Crops and Products 143:111934. https://doi.org/10.1016/j.indcrop.2019.111934

Mathur S, Sharma MP, Jajoo A (2018). Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. Journal of Photochemistry and Photobiology 180:149-154. https://doi.org/10.1016/j.jphotobiol.2018.02.002

Matsubara Y, Hirano I, Sassa D, Koshikawa K (2004). Alleviation of high temperature stress in strawberry plants infected with arbuscular mycorrhizal fungi. Environment Control in Biology 42:105-111.

Meng LL, He JD, Zou YN, Wu QS, Kuča K (2020). Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange. Plant, Soil and Environment 66:183-189. https://doi.org/10.17221/100/2020-PSE

Navarro A, Elia A, Conversa G, Campi P, Maetrorilli M (2012). Potted mycorrhizal carnation plants and saline stress: Growth, quality and nutritional plant responses. Scientia Horticulturae 140:131-139. https://doi.org/10.1016/j.scienta.2012.03.016

Perner H, Schwarz D, Bruns C, Mader P, George E (2007). Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469-474. https://doi.org/10.1007/s00572-007-0116-7

Policelli N, Bruns TD, Vilgalys R, Nuñez MA (2019). Suilloid fungi as global drivers of pine invasions. New Phytologist 222:714-725. https://doi.org/10.1111/nph.15660

Porcel R, Azcon R, Ruiz-Lozano JM (2004). Evaluation of the role of genes encoding for D1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiological and Molecular Plant Pathology 65:211-221. https://doi.org/10.1093/jxb/eri188

Powell JR, Rillig MC (2018). Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist 220:1059-1075. https://doi.org/10.1111/nph.15119

Prados-Ligeo AM, Bascón-Fernandez J, Calvet-Pinós C, Ruiz AL, Melero-Vara JM, Jose BU (2002). Effect of different soil and clove treat-556 naqvi and naqviments in the control of white rot of garlic. Annals of Applied Biology 140:247-253. https://doi.org/10.1111/j.1744-7348.2002.tb00178.x

Rajtor M, Piotrowskaseget Z (2016). Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Chemosphere 162:105-116. https://doi.org/10.1016/j.chemosphere.2016.07.071

Ratti N, Abdul K, Shukla PK (2000). Effect of Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappe on root-knot disease of menthol mint (Mentha arvensis spp. haplocalyx Briquet) caused by Meloidogyne incognita (Kofoid and White) Chitwood. Journal of Spices and Aromatic Crops 9:129-132.

Razem FA, Baron K, Hill RD (2006). Turning on gibberellin and abscisic acid signaling. Current Opinion in Plant Biology 9:454-459. https://doi.org/10.1016/j.pbi.2006.07.007

Rillig MC (2004). Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters 7:740-754. https://doi.org/10.1111/j.1461-0248.2004.00620.x

Rillig MC, Mardatin NF, Leifheit EF, Antunes PM (2010). Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biology and Biochemistry 42:1189-1191. https://doi.org/10.1016/j.soilbio.2010.03.027

Augé RM, Toler HD, Sams CE, Nasim G (2008). Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18:115-121. Https://doi.org/10.1007/s00572-008-0162-9

Ruth B, Khalvati M, Schmidhalter U (2011). Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant and Soil 342(1/2):459-468. https://doi.org/10.1007/s11104-010-0709-3

Sastry MS, Sharma AK, Johri BN (2000). Effect of an AM fungal consortium and Pseudomonas on the growth and nutrient uptake of Eucalyptus hybrid. Mycorrhiza 10:55-61. https://doi.org/10.1007/s005720000057

Scagel CF (2004). Inoculation with vesicular-arbuscular mycorrhizal fungi and rhizobacteria alters nutrient allocation and flowering of harlequin flower. HortTechnology 14:39-48. https://doi.org/10.21273/HORTTECH.14.1.0039

Shabani L, Sabzalian MR, Pour SM (2016). Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza 26:67-76. https://doi.org/10.1007/s00572-015-0647-2

Shamshiri MH, Usha K, Singh B (2012). Growth and nutrient uptake responses of Kinnow to vesicular arbuscular mycorrhizae. Agronomy 4:689-693. https://doi.org/10.5402/2012/535846

Singer AC, Crowley DE, Thompson IP (2003). Secondary plant metabolites in phytoremediation and biotransformation. Trends in Biotechnology 21:123-130. https://doi.org/10.1016/S0167-7799(02)00041-0

Slezack S, Dumas-Gaudot E, Rosendahl S, Kjøller R, Paynot M, Negrel J, Gianinazzi S (1999). Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and/or Aphanomyces euteiches in relation to bioprotection. New Phytologist 142:517-529. https://doi.org/10.1046/j.1469-8137.1999.00421.x

Smith SE, Smith FA (2011). Roles of arbuscular mycorrhizas in plant nutritionand growth: new paradigms from cellular to ecosystem scales. Annual Review Plant of Biological 63:227-250. https://doi.org/10.1146/annurev-arplant-042110-103846

Sohn BK, Kim KY, Chung SJ, Kim WS, Park SM, Kang JG, … Lee JH (2003). Effect of different timing of AMF inoculation on plant and flower quality of chrysanthemum. Scientia Horticulture 98:173-183. https://doi.org/10.1016/S0304-4238(02)00210-8

Song F, Kong X, Dong A, Liu X (2012). Impact of arbuscular mycorrhizal fungi on the growth and related physiological indexes of Amorpha fruticosa. Journal of Medicinal Plants Research 6(20): 3648-3655. https://doi.org/10.5897/JMPR12.035

Stabler LB, Martin CA, Stutz JC (2001). Effect of urban expansion on arbuscular mycorrhizal fungal mediation of landscape tree growth. Journal of Arboriculture 27(4):193-202.

Sulzbacher MA, Grebenc T, Bevilacqua CB, Steffen RB, Coelho G, Silveira AO, … Antoniolli ZI (2018). Co-invasion of ectomycorrhizal fungi in the Brazilian Pampa biome. Applied Soil Ecology 130:194-201. https://doi.org/10.1016/j.apsoil.2018.06.007

Swain SM, Singh DP (2005). Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends in Plant Science 10:123-129.

Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, Laliberté E (2017). Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355:173-176. https://doi.org/10.1126/science.aai8291

Thorne ME, Rhodes L, Cardina J (2013). Soil compaction and arbuscular mycorrhizae affect seedling growth of three grasses. Open Journal of Ecology 3:455-463. https://doi.org/10.4236/oje.2013.37052

Tu JL, Liu XM, Xiao JX (2019). Effects of arbuscular mycorrhizal inoculation on osmoregulation and antioxidant responses of blueberry plants. Bangladesh Journal of Botany 48:641-647.

Urcelay C, Diaz S (2003). The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters 6:388-391. https://doi.org/10.1046/j.1461-0248.2003.00444.x

Varga S, Kytöviita MM (2010). Gender dimorphism and mycorrhizal symbiosis affect floral visitors and reproductive output in Geranium sylvaticum. Functional Ecology 24:750-758. https://doi.org/10.1111/j.1365-2435.2010.01708.x

Varga S, Soulsbury CD (2017). Paternal arbuscular mycorrhizal fungal status affects DNA methylation in seeds. Biology Letters 13:1-4. https://doi.org/10.1098/rsbl.2017.0407

Vogelsang KM, Reynolds HL, Bever JD (2006). Mycorrhizal fungal identity and richness determine the diversity and productivity of a tall grass prairie system. New Phytologist 172:554-562. https://doi.org/10.1111/j.1469-8137.2006.01854.x

Wang J, Fu Z, Ren Q, Zhu LJ, Lin J, Zhang JC, … Ma JY (2019a). Effects of arbuscular mycorrhizal fungi on growth, photosynthesis, and nutrient uptake of Zelkova serrata (Thunb.) makino seedlings under salt stress. Forests 10:186-206. https://doi.org/10.3390/f10020186

Wang J, Wang GG, Zhang B, Zhang B, Yuan ZM (2019b). Arbuscular mycorrhizal fungi associated with tree species in a planted forest of eastern China. Forests 10:424-436. https://doi.org/10.3390/f10050424

Wang S, Chen A, Xie K, Yang XF, Luo ZZ, Chen JD, … Xu GH (2020). Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proceedings of the National Academy of Sciences 117:16649-16659. https://doi.org/10.1073/pnas.2000926117

Wang YY, Vestberg M, Walker C, Hurme T, Zhang XP, Lindstrom K (2008). Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza 18:59-68. https://doi.org/10.1007/s00572-008-0161-x

Watts-Williams SJ, Cavagnaro TR, Tyerman SD (2019). Variable effects of arbuscular mycorrhizal fungal inoculation on physiological and molecular measures of root and stomatal conductance of diverse Medicago truncatula accessions. Plant Cell & Environment 42:285-294. https://doi.org/10.1111/pce.13369

Werner GDA, Kiers ET (2015). Partner selection in the mycorrhizal mutualism. New Phytologist 205:1437-1442. https://doi.org/10.1111/nph.13113

Wiseman PE, Wells C (2005). Soil inoculum potential and arbuscular mycorrhizal colonization of Acer rubrum in forested and developed landscapes. Journal of Arboriculture 31:296-302.

Wu QS, He JD, Srivastava AK, Zou YN, Kuča K (2019). Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology 39:1149-1158. https://doi.org/10.1093/treephys/tpz039

Wu QS, Srivastava AK, Zou YN (2013). AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae 164:77-87. https://doi.org/10.1016/j.scienta.2013.09.010

Xie MM, Wu QS (2015). Mycorrhiza modulates morphology, color and duration of flowers in hyacinth. Biotechnology 16:116-122. https://doi.org/10.3923/biotech.2017.116.122

Xie MM, Wu QS (2018). Arbuscular mycorrhizal fungi regulate flowering of Hyacinths orientalis L. Anna marie. Emirates Journal of Food and Agriculture 30:144-149. https://doi.org/10.9755/ejfa.2018.v30.i2.1614

Xie MM, Zou YN, Wu QS, Zhang ZZ, Kuča K (2020). Single or dual inoculation of arbuscular mycorrhizal fungi and rhizobia regulates plant growth and nitrogen acquisition in white clover. Plant, Soil and Environment 66:287-294. Https://doi.org/10.17221/234/2020-PSE

Yang AN, Lu L, Wu CX, Xia MM (2011). Arbuscular mycorrhizal fungi associated with Huangshan Magnolia (Magnolia cylindrica). Journal of Medicinal Plants Research 5:4542-4548. https://doi.org/10.5897/JMPR.9000262

Yang G, Yang X, Zhang W, Wei Y, Ge G, Lu W, … Zhang YJ (2016a). Arbuscular mycorrhizal fungi affect plant community structure under various nutrient conditions and stabilize the community productivity. Oikos 125:576-585. https://doi.org/10.1111/oik.02351

Yang R, Zhou G, Zan S, Guo F, Su N, Li J (2014a). Arbuscular mycorrhizal fungi facilitate the invasion of Solidago canadensis L. in southeastern China. Acta Oecological 61:71-77. https://doi.org/10.1016/j.actao.2014.10.008

Yang Y, Han X, Liang Y, Ghosh A, Chen J, Tang M (2015a). The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS ONE 10:e0145726. https://doi.org/10.1371/journal.pone.0145726

Yang Y, Liang Y, Ghosh A, Song YY, Chen H, Tang M (2015b). Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Environmental Science and Pollution Research 22:13179-13193. https://doi.org/10.1007/s11356-015-4521-8

Yang Y, Liang Y, Han XZ, Chiu TY, Ghosh A, Chen H, Tang M (2016b). The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Scientific Reports 6:20469. https://doi.org/10.1038/srep20469

Yang YR, Tang M, Sulpice R, Chen H, Tian S, Ban YH (2014b). Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. Journal of Plant Growth Regulation 33:612-625. https://doi.org/10.1007/s00344-013-9410-0

Zhang F, Liu M, Li Y, Chen YY, Xiao Y (2019a). Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Science of The Total Environment 655:1150-1158. https://doi.org/10.1016/j.scitotenv.2018.11.317

Zhang F, Zou YN, Wu QS (2018a). Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Scientia Horticulturae 229:132-136.

Zhang F, Zou YN, Wu QS, Kuča K (2020). Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environmental and Experimental Botany 171:103962. https://doi.org/10.1016/j.envexpbot.2019.103926

Zhang Y, Hu J, Bai J, Wang JH, Yin R, Wang JW, Lin X (2018b). Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Science of The Total Environment 628:282-290. https://doi.org/10.1016/j.scitotenv.2018.01.331

Zhang YC, Zou YN, Liu LP, Wu QS (2019b). Common mycorrhizal networks activate salicylic acid defense responses of trifoliate orange (Poncirus trifoliata). Journal of Integrative Plant Biology 61:1099-1111. https://doi.org/10.1111/jipb.12743

Zhou X, Fu L, Xia Y, Zheng LQ, Chen C, Shen ZG, Chen YH (2017). Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes patula through the sorption and barrier mechanisms of intraradical hyphae. Metallomics 9:936-948. https://doi.org/10.1039/C7MT00072C

Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012). Arbuscular mycorrhizae improve photosynthesis and water status of Zea mays L. under drought stress. Plant Soil and Environment 58:186-191. https://doi.org/10.17221/23/2011-PSE

Zou YN, Wu HH, Giri B, Wu QS, Kuca K (2019). Mycorrhizal symbiosis down-regulates or does not change root aquaporin expression in trifoliate orange under drought stress. Plant Physiology and Biochemistry 144:292-299. https://doi.org/10.1016/j.plaphy.2019.10.001

Zou YN, Wu QS, Kuča K (2020). Unraveling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biology https://doi.org/10.1111/plb.13161

Downloads

Published

2020-09-24

How to Cite

XIE, M.-M., WANG, Y. ., LI, Q.-S. ., KUČA, K., & WU, Q.-S. (2020). A friendly-environmental strategy: application of arbuscular mycorrhizal fungi to ornamental plants for plant growth and garden landscape. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3), 1100–1115. https://doi.org/10.15835/nbha48312055

Issue

Section

Review Articles
CITATION
DOI: 10.15835/nbha48312055

Most read articles by the same author(s)

<< < 1 2 3