Morpho-physiology and Pht1 gene expressions in native maize plants with AM fungi and phosphorus

  • Sergio VALERIO-LANDA Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, Baja California Sur
  • Ramon ZULUETA-RODRIGUEZ Universidad Veracruzana, Facultad de Ciencias Agrícolas, Circuito Universitario Gonzalo Aguirre Beltrán s/n, Zona Universitaria, Xalapa, Veracruz
  • Evangelina E. QUIÑONES-AGUILAR Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Col. El Bajío del Arenal, Zapopan, Jalisco
  • Liliana LARA-CAPISTRAN Universidad Veracruzana, Facultad de Ciencias Agrícolas, Circuito Universitario Gonzalo Aguirre Beltrán s/n, Zona Universitaria, Xalapa, Veracruz
  • Carlos ANGULO Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, Baja California Sur
  • Pablo PRECIADO-RANGEL Instituto Tecnológico Nacional de México- Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Ejido Anna, Torreón, Coahuila
  • Luis G. HERNANDEZ-MONTIEL Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, Baja California Sur
Keywords: Claroideoglomus etunicatum; endophyte; qPCR; ZEAma-Pht1; 3 transporter; ZEAma-Pht1; 6 transporter

Abstract

Maize is a crop important worldwide, but its production is limited to phosphorus availability in soil. Plants form a symbiotic association to improve their nutrition with arbuscular mycorrhizal fungi (AMF), which increase to absorption phosphorus (P) and the expression of transporters of the family Pht1. Few studies have focused on native maize plants and AMF. Thus, the objective of this study was to determine the morpho-physiological response and expression of phosphate Pht1 transporters in two native maize plants inoculated with Claroideoglomus etunicatum and P concentrations. The height, leaf area, dry biomass, CO2 assimilation rate, stomatal conductance, transpiration rate, intercellular CO2, water potential, greenness index, total chlorophyll, and ZEAma; Pht1;3 and ZEAma; Pht1;6 transporter expressions in maize plants under P (0.01 and 1 mM) concentrations were evaluated. The results showed that each native maize plant had a differential response in morpho-physiology and transporter expressions when they were inoculated with AMF and P. The response of maize plant was related with its genotype and phenotype plus environmental factor that influenced the AMF-host interaction, mycorrhizal colonization and soil nutrient absorption.

Metrics

Metrics Loading ...

References

Attarzadeh M, Balouchi H, Rajaie M, Dehnavi MM, Salehi A (2019). Improvement of Echinacea purpurea performance by integration of phosphorus with soil microorganisms under different irrigation regimes. Agricultural Water Management 221:238-247. https://doi.org/10.1016/j.agwat.2019.04.022

Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T (2019). Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress-a meta-analysis. Frontiers in Plant Science 10:457. https://doi.org/10.3389/fpls.2019.00457

Cheng, S, Tian L, Zou YN, Wu QS, Kuka K, Bora P (2020). Molecular responses of arbuscular mycorrhizal fungi in tolerating root rot of trifoliate orange. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(2):558-571. https://doi.org/10.15835/nbha48211916

Chu Q, Zhang L, Zhou J, Yuan L, Chen F, Zhang F, Feng G, Rengel Z (2020). Soil plant-available phosphorus levels and maize genotypes determine the phosphorus acquisition efficiency and contribution of mycorrhizal pathway. Plant Soil 449:357-371. https://doi.org/10.1007/s11104-020-04494-4

Deng Y, Chen K, Teng W, Zhan A, Tong Y, Feng G, Cui Z, Zhang F, Chen X (2014). Is the inherent potential of maize roots efficient for soil phosphorus acquisition?. PLoS One 9:1-9. https://doi.org/10.1371/journal.pone.0090287

Hashem A, Abd_Allah EF, Alqarawi AA, Wirth S, Egamberdieva D (2019). Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences 26(1):38-48. https://doi.org/10.1016/j.sjbs.2016.11.015

Higo M, Takahashi Y, Gunji K, Isobe K (2018a). How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation?. Journal of the Science Food and Agriculture 98(4):1388-1396. https://doi.org/10.1002/jsfa.8606

Higo M, Sato R, Serizawa A, Takahashi Y, Gunji K, Tatewaki Y, Isobe K (2018b). Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?. PeerJ 6:e4606. https://doi.org/10.7717/peerj.4606

Higo M, Tatewaki Y, Gunji K, Kaseda A, Isobe K (2019a). Cover cropping can be a stronger determinant than host crop identity for arbuscular mycorrhizal fungal communities colonizing maize and soybean. PeerJ 7:e6403. https://doi.org/10.7717/peerj.6403

Higo M, Kang DJ, Isobe K (2019b). First report of community dynamics of arbuscular mycorrhizal fungi in radiocesium degradation lands after the Fukushima-Daiichi Nuclear disaster in Japan. Scientific Reports 9:8240. https://doi.org/10.1038/s41598-019-44665-7

Higo M, Azuma M, Kamiyoshihara Y, Kanda A, Tatewaki Y, Isobe K (2020a). Impact of phosphorus fertilization on tomato growth and arbuscular mycorrhizal fungal communities. Microorganisms 8(2):178. https://doi.org/10.3390/microorganisms8020178

Higo M, Tatewaki Y, Iida K, Yokota K, Isobe K (2020b). Amplicon sequencing analysis of arbuscular mycorrhizal fungal communities colonizing maize roots in different cover cropping and tillage systems. Scientific Reports 10:6039. https://doi.org/10.1038/s41598-020-58942-3

INVAM (2016). International culture collection of (vesicular) arbuscular mycorrhizal fungi. http://invam.wvu.edu/methods/spores/enumeration-of-spores

Jackson ML (1976). Análisis químico de los suelos. Ediciones Omega, S.A. Barcelona, España, pp 662.

Jain P, Pundir RK (2019). Biocontrol of soil phytopathogens by arbuscular mycorrhiza-A review. In: Mycorrhizosphere and Pedogenesis Springer, Singapore, pp 221-237.

Kim SJ. Eo JK, Lee E, Park H, Eom AH (2017). Effects of arbuscular mycorrhizal fungi and soil conditions on crop plant growth. Mycobiology 45(1):20-24. https://doi.org/10.5941/MYCO.2017.45.1.20

Lie H, Zhang D, Wang X, Li H, Rengel Z, Shen J (2019). Competition between Zea mays genotypes with different root morphological and physiological traits is dependent on phosphorus forms and supply patterns. Plant Soil 434:125-137. https://doi.org/10.1007/s11104-018-3616-7

Lin Y, Zhang C, Lan H, Gao S, Liu H, Liu J, … Zhang S (2014). Validation of potential reference genes for qPCR in maize across abiotic stresses, hormone treatments, and tissue types. PLoS One 9(5):1-11. https://doi.org/10.1371/journal.pone.0095445

Liu F, Xu Y, Jiang H, Jiang C, Du Y, Gong C, … Cheng B (2016). Systematic identification, evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by arbuscular mycorrhizal fungi. International Journal of Molecular Sciences 17(6):930. https://doi.org/10.3390/ijms17060930

Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262

Londoño DMM, Meyer E, González D, Hernández AG, Soares CRFS, Lovato PE (2019). Landrace maize varieties differ from conventional and genetically modified hybrid maize in response to inoculation with arbuscular mycorrhizal fungi. Mycorrhiza 29:237-249. https://doi.org/10.1007/s00572-019-00883-5

Loth-Pereda V, Orsini E, Courty PE, Lota F, Kohler A, Diss L, … Martin F (2011). Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiology 156:2141-2154. https://doi.org/10.1104/pp.111.180646

Malhotra H, Sharma S, Pandey R (2018). Phosphorus nutrition: Plant growth in response to deficiency and excess. In: Plant Nutrients and Abiotic Stress Tolerance Springer, Singapore, pp 171-190.

Mathur S, Jajoo A (2020). Arbuscular mycorrhizal fungi protects maize plants from high temperature stress by regulating photosystem II heterogeneity. Industrial Crops and Products 143:111934. https://doi.org/10.1016/j.indcrop.2019.111934

McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115(3):495-501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

Mickan BS, Abbott LK, Solaiman ZM, Mathes F, Siddique KH, Jenkins SN (2019). Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biology and Fertility of Soils 55:53-66. https://doi.org/10.1007/s00374-018-1328-z

Morimoto S, Uchida T, Matsunami H, Kobayashi H (2018). Effect of winter wheat cover cropping with no-till cultivation on the community structure of arbuscular mycorrhizal fungi colonizing the subsequent soybean. Soil Science Plant Nutrition 64(5):545-553. https://doi.org/10.1080/00380768.2018.1486171

Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009). Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytologist 1881(4):950-959. https://doi.org/10.1111/j.1469-8137.2008.02721.x

Phillips JM, Hayman DS (1970). Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions British Mycological Society 55(1):158-161.

Rimington WR, Duckett JG, Field KJ, Bidartondo MI, Pressel S (2020). The distribution and evolution of fungal symbioses in ancient lineages of land plants. Mycorrhiza 30:23-49. https://doi.org/10.1007/s00572-020-00938-y

Rocha I, Duarte I, Ma Y, Souza-Alonso P, Látr A, Vosátka M, … Oliveira RS (2019). Seed coating with arbuscular mycorrhizal fungi for improved field production of chickpea. Agronomy 9(8):471. https://doi.org/10.3390/agronomy9080471

Saia S, Aissa E, Luziatelli F, Ruzzi M, Colla G, Ficca AG, Cardarelli M, Rouphael Y (2020). Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza 30:133-147. https://doi.org/10.1007/s00572-019-00927-w

Sawers RJH, Svane SF, Quan C, Grønlund M, Wozniak B, Gebreselassie MN, … Paskowski U (2017). Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytology 214(2):632-643. https://doi.org/10.1111/nph.14403

Scrase FM, Sinclair FL, Farrar JF, Pavinato PS, Jones DL (2019). Mycorrhizas improve the absorption of non-available phosphorus by the green manure Tithonia diversifolia in poor soils. Rhizosphere 9:27-33. https://doi.org/10.1016/j.rhisph.2018.11.001

Smith SE, Jakobsen I, Grønlund M, Smith FA (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156:1050-1057. https://doi.org/10.1104/pp.111.174581

Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, … Stajich JE (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028-1046. https://doi.org/10.3852/16-042

Thirkell TJ, Pastok D, Field KJ (2020). Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Global Change Biology 26(3):1725-1738. https://doi.org/10.1111/gcb.14851

Tian H, Drijber R, Li X, Miller DN, Wienhold BJ (2013). Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza 23:507-514. https://doi.org/10.1007/s00572-013-0491-1

Victor Roch G, Maharajan T, Ceasar SA, Ignacimuthu S (2019). The role of Pht1 family transporters in the acquisition and redistribution of phosphorus in plants. Critical Reviews in Plant Sciences 38(3):171-198. https://doi.org/10.1080/07352689.2019.1645402

Wu F, Fang F, Wu N, Li L, Tang M (2020). Nitrate transporter gene expression and kinetics of nitrate uptake by Populus × canadensis ‘Neva’ in relation to arbuscular mycorrhizal fungi and nitrogen availability. Frontiers in Microbiology 11:176. https://doi.org/10.3389/fmicb.2020.00176

Zhang Y, Hu L, Yu D, Xu K, Zhang J, Li X, Wang P, Chen G, Liu Z, Peng C, Li C, Guo T (2019). Integrative analysis of the wheat PHT1 gene family reveals a novel member involved in arbuscular mycorrhizal phosphate transport and immunity. Cells 8(5):490. https://doi.org/10.3390/cells8050490

Published
2020-09-14
How to Cite
VALERIO-LANDA, S., ZULUETA-RODRIGUEZ, R., QUIÑONES-AGUILAR, E. E., LARA-CAPISTRAN, L., ANGULO, C., PRECIADO-RANGEL, P., & HERNANDEZ-MONTIEL, L. G. (2020). Morpho-physiology and Pht1 gene expressions in native maize plants with AM fungi and phosphorus. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3), 1357-1368. https://doi.org/10.15835/nbha48312033
Section
Research Articles