Nutritional quality, fatty acids content and antioxidant capacity of pecan nut fruits from Criolla and Improved walnut varieties

Authors

  • Nidya F. CURIEL-MACIEL Universidad Autónoma del Estado de Morelos, Centro de Investigación en Biotecnología, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos (MX)
  • Jesús G. ARREOLA-ÁVILA Universidad Autónoma Chapingo Unidad Regional Universitaria de Zonas Áridas, Carretera Gómez Palacio - Ciudad Juárez, Bermejillo km 40, C.P. 35230, Dgo (MX)
  • Juan R. ESPARZA-RIVERA Universidad Juárez del Estado de Durango, Facultad de Ciencias Químicas, Av. Articulo 123 s/n Fraccionamiento Filadelfia, C.P. 35010, Gómez Palacio, Dgo (MX)
  • Edén A. LUNA-ZAPIÉN Universidad Autónoma Chapingo Unidad Regional Universitaria de Zonas Áridas, Carretera Gómez Palacio - Ciudad Juárez, Bermejillo km 40, C.P. 35230, Dgo (MX)
  • José R. MINJARES-FUENTES Universidad Juárez del Estado de Durango, Facultad de Ciencias Químicas, Av. Articulo 123 s/n Fraccionamiento Filadelfia, C.P. 35010, Gómez Palacio, Dgo (MX)
  • Erick SIERRA-CAMPOS Universidad Juárez del Estado de Durango, Facultad de Ciencias Químicas, Av. Articulo 123 s/n Fraccionamiento Filadelfia, C.P. 35010, Gómez Palacio, Dgo (MX)
  • Jorge A. MEZA-VELÁZQUEZ Universidad Juárez del Estado de Durango, Facultad de Ciencias Químicas, Av. Articulo 123 s/n Fraccionamiento Filadelfia, C.P. 35010, Gómez Palacio, Dgo (MX)

DOI:

https://doi.org/10.15835/nbha49212021

Keywords:

health benefits, nut, nutriments, oleic acid

Abstract

In the current study were evaluated the nutrimental quality, fatty acid and mineral content, and antioxidant capacity of pecan nut of Criolla and Improved walnut varieties. Nut fruit samples of three Criolla walnut varieties (‘Nazas I’, ‘Nazas II’ and ‘Norteña’), and two Improved varieties (‘Western’ and ‘Wichita’) were collected in La Laguna (Nazas, Durango) in Northern Mexico. The analyses run in nut samples were: bromatological and mineral content, fatty acids profile and antioxidant capacity. The results showed that Criolla and Improved varieties had similar bromatological content except ‘Nazas I’, which had the lowest protein and fat content. Furthermore, nuts from Criolla varieties had a higher mineral content, including iron (~38 mg/100 g dw), zinc (~51 mg/100 g dw) and manganese (25 mg/100 g dw). Besides, the fatty acid profile indicates a higher rate of oleic acid (71%) in nut oil of Criolla varieties than in Improved varieties (61%). Regarding antioxidant capacity (AC) the obtained values were similar in all varieties, with ‘Norteña’ variety (850 µM trolox equivalent/g of oil) in Criolla, and ‘Western’ (800 µM trolox equivalent/g of oil) in Improved as the highest values of AC among all varieties. Hence, pecan nut fruits of Criolla varieties are good nutrients and beneficial health compounds source for consumers, and their production and marketing represent interesting opportunity areas for nut producers.

Metrics

Metrics Loading ...

References

Aguilar Perez H, Arreola Avila J, Morales Olais E, Cuellar Villarreal E, Lagarda Murrieta A, Tarango Rivero H, … Lombardini L (2015). Norteña Pecan. HortScience 50(9):1399-1400. https://doi.org/10.21273/HORTSCI.50.9.1399

Atanasov AG, Sabharanjak SM, Zengin G, Mollica A, Szostak A, Simirgiotis M… Mocan A (2018). Pecan nuts: A review of reported bioactivities and health effects. Trends in Food Science & Technology 71:246-257. https://doi.org/10.1016/j.tifs.2017.10.019

Banim PJ, Luben R, Khaw K-T, Hart AR (2018). Dietary oleic acid is inversely associated with pancreatic cancer–Data from food diaries in a cohort study. Pancreatology 18(6):655-660. https://doi.org/10.1016/j.pan.2018.07.004

Beuchat L, Pegg R (2013). Improving the safety and quality of pecans. In: Improving the safety and quality of nuts. Elsevier, pp 297-329. https://doi.org/10.1533/9780857097484.2.297

Beuchat L, Worthington R (1978). Fatty acid composition of tree nut oils. International Journal of Food Science & Technology 13(4):355-358. https://doi.org/10.1111/j.1365-2621.1978.tb00813.x

Bligh EG, Dyer WJ (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8):911-917. https://doi.org/10.1139/o59-099

Carrillo C, Cavia M, Alonso-Torre S (2012). Antitumor effect of oleic acid; mechanisms of action. A review Nutrición Hospitalaria 27(5):1860-1865. http://dx.doi.org/10.3305/nh.2012.27.6.6010

Dominguez-Avila JA, Alvarez-Parrilla E, Lopez-Diaz JA, Maldonado-Mendoza IE, Gomez-Garcia M del C, de la Rosa LA (2015). The pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets. Food Chemistry 168:529-537. https://doi.org/10.1016/j.foodchem.2014.07.092

Duarte-Almeida JM, Santos RJd, Genovese MI, Lajolo FM (2006). Avaliação da atividade antioxidante utilizando sistema beta-caroteno/ácido linoléico e método de seqüestro de radicais DPPH. Food Science and Technology 26 (2):446-452. https://doi.org/10.1590/S0101-20612006000200031

Grauke LJ (1988). Pecan germplasm repository expands with collection from native Mexican populations. Pecan South, vol 22.

Horwitz W (2010). Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs. Ed Horwitz W. Gaithersburg (Maryland): AOAC International, 1997.

Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T (2017). Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 25(1):11-24. https://doi.org/ 10.1007/s10787-017-0309-4

Jiang Q (2014). Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radical Biology and Medicine 72:76-90. http://doi.org/10.1016/j.freeradbiomed.2014.03.035

Vazquez-Flores LA, Alvarez-Parrilla E, Rodrigo-García J, Medina-Campos ON, Ávila-Nava A, González-Reyes S, Pedraza- AA Chaverri J (2014). Content of major classes of polyphenolic compounds, antioxidant, antiproliferative, and cell protective activity of pecan crude extracts and their fractions. Journal of Functional Foods 7:219-228. https://doi.org/10.1016/j.jff.2014.02.008

Martínez-Peniche RA (2001). Nut quality of native pecan selections [Carya illinoensis (Wangenh) K. Koch) in central México. Acta Horticulturae 565:69-73. https://doi.org/10.17660/ActaHortic.2001.565.10

Menendez J, Vellon L, Colomer R, Lupu R (2005). Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses her-2/neu (erb b-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (herceptin™) in breast cancer cells with her-2/neu oncogene amplification. Annals of Oncology 16(3):359-371. https://doi.org/10.1093/annonc/mdi090

Mudgil D, Barak S (2013). Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. International Journal of Biological Macromolecules 61:1-6. https://doi.org/10.1016/j.ijbiomac.2013.06.044

Nishi S, Kendall C, Bazinet R, Bashyam B, Ireland C, Augustin L… Jenkins D (2014). Nut consumption, serum fatty acid profile and estimated coronary heart disease risk in type 2 diabetes. Nutrition, Metabolism and Cardiovascular Diseases 24(8):845-852. https://doi.org/10.1016/j.numecd.2014.04.001

Ojeda‐Barrios D, Abadía J, Lombardini L, Abadía A, Vázquez S (2012). Zinc deficiency in field‐grown pecan trees: changes in leaf nutrient concentrations and structure. Journal of the Science of Food and Agriculture 92(8):1672-1678. https://doi.org/10.1002/jsfa.5530

Oro T, Ogliari PJ, Amboni R, Barrera-Arellano D, Block JM (2008). Evaluación de la calidad durante el almacenamiento de nueces Pecán [Carya illinoinensis (Wangenh.) C. Koch] acondicionadas en diferentes envases. Grasas y Aceites 59(02):132-138. https://doi.org/10.3989/gya.2008.v59.i2.501

Ötles S, Ozgoz S (2014). Health effects of dietary fiber. Acta Scientiarum Polonorum Technologia Alimentaria 13(2):191-202. https://doi.org/10.1111/j.1753-4887.2009.00189.x

Ozkan G, Koyuncu MA (2005). Physical and chemical composition of some walnut (Juglans regia L) genotypes grown in Turkey. Grasas y Aceites 56(2):141-146. https://doi.org/10.3989/gya.2005.v56.i2.122

Polmann G, Badia V, Frena M, Teixeira GL, Rigo E, Block JM, Feltes MMC (2019). Enzyme-assisted aqueous extraction combined with experimental designs allows the obtaining of a high-quality and yield pecan nut oil. LWT:108283. https://doi.org/10.1016/j.lwt.2019.108283

Rose J (2016). Trace elements in health: a review of current issues. Butterworth-Heinemann. https://www.ncbi.nlm.nih.gov/sars-cov-2/

Rubio C, González Weller D, Martín-Izquierdo R, Revert C, Rodríguez I, Hardisson A (2007). El zinc: oligoelemento esencial. Nutrición Hospitalaria 22(1):101-107. http://scielo.isciii.es

Santerre CR (1994). Pecan composition. In: Pecan Technology. Springer, pp 98-110. https://doi.org/10.1007/978-1-4615-2385-7_7

Senter S, Horvat R (1978). Minor fatty acids from pecan kernel lipids. Journal of Food Science 43(5):1414-1415. https://doi.org/10.1111/j.1365-2621.1978.tb02506.x

SIAP-SAGARPA (2018). Servicio de Información Agroalimentaria y Pesquera-Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. https://nube.siap.gob.mx

Singanusong R, Mason RL, D’Arcy BR, Nottingham SM (2003). Compositional changes of Australia-grown Western Schley pecans [Carya illinoinensis (Wangenh.) K. Koch] during maturation. Journal of agricultural and food chemistry 51(2):406-412. http://doi.org/10.1021/jf025869a

Su M, Venkatachalam M, Teuber SS, Roux KH, Sathe SK (2004). Impact of γ‐irradiation and thermal processing on the antigenicity of almond, cashew nut and walnut proteins. Journal of the Science of Food and Agriculture 84(10):1119-1125. https://doi.org/10.1002/jsfa.1748

Thompson TE, Grauke L (2012). Lipan Pecan. HortScience 47(1):121-123. https://doi.org/10.21273/HORTSCI.47.1.121

Toro‐Vazquez J, Charó‐Alonso M, Pérez‐Briceño F (1999). Fatty acid composition and its relationship with physicochemical properties of pecan (Carya illinoensis) oil. Journal of the American Oil Chemists’ Society 76(8):957-965.

Villarreal-Lozoya JE, Lombardini L, Cisneros-Zevallos L (2007). Phytochemical constituents and antioxidant capacity of different pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. Food Chemistry 102(4):1241-1249. https://doi.org/10.1016/j.foodchem.2006.07.024

Wakeling LT, Mason RL, D’Arc BR, Caffin NA (2001). Composition of pecan cultivars Wichita and Western Schley [Carya illinoinensis (Wangenh.) K. Koch] grown in Australia. Journal of Agricultural and Food Chemistry 49(3):1277-1281. http://doi.org/10.1021/jf000797d

Yang J, Zhou F, Xiong L, Mao S, Hu Y, Lu B (2015). Comparison of phenolic compounds, tocopherols, phytosterols and antioxidant potential in Zhejiang pecan [Carya cathayensis] at different stir-frying steps. LWT-Food Science and Technology 62(1):541-548. https://doi.org/10.1016/j.lwt.2014.09.049

Downloads

Published

2021-05-11

How to Cite

CURIEL-MACIEL, N. F., ARREOLA-ÁVILA, J. G., ESPARZA-RIVERA, J. R., LUNA-ZAPIÉN, E. A., MINJARES-FUENTES, J. R., SIERRA-CAMPOS, E., & MEZA-VELÁZQUEZ, J. A. (2021). Nutritional quality, fatty acids content and antioxidant capacity of pecan nut fruits from Criolla and Improved walnut varieties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(2), 12021. https://doi.org/10.15835/nbha49212021

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha49212021

Most read articles by the same author(s)